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collective prioritizes test speed over accuracy...

- Slower, More Specific Test
Faster, Less Specific Test

Cumulative Mortality, Rate per 100,000
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Collective outcomes can be very different from the sum of individual choices




modeling collective behavior is critical



a2 | build bridges?
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Collective behavior across scales and substrates

Cities Citizens Cells

Supply Chains Pandemics Morphogenesis
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Collective behavior across scales and substrates

Cities Citizens Cells

Supply Chains Pandemics Morphogenesis

how to capture?

bit.ly/diff-abms



Agent-based Models

Simulate microscopic behavior and interactions in heterogeneous collectives



ABMs vs Multi-Agent Reinforcement Learning

ABMs MARL
* Many agents * Few agents
* Simple behavior * Complicated behavior

Flocking birds oitly/ditabms Starcraft2 (AlphaStar)



long history of research and open challenges
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Simulation? Multi-modal? Behaviour?
Calibrate? Multi-scale? Mechanism?

Analyze? Distributed? Real-world feedback?



Proposal: Differentiable Agent-based Modeling

—
Simulation? Multi-modal? Behaviour?
Calibrate? Multi-scale? Mechanism?
Analyze? Distributed? Real-world feedback?

Vectorization Gradient-based Neural Network
learning composition




Agent-based Model

H —g— | Simulator | = x

Differentiable if

ve 4:[f(9)] exists




Why do we care about the gradient?

Simulate country-scale ecosystems for few hundred dollars on commodity hardware

B P T S,

50 hours 100,000 hours 5,000 hours
Differentiable ABM 5 minutes 20 minutes 10 seconds
Gra’dABM run-time scales linearly with number of interactions

Simulation run-time (sec)
] )
®

] o ] Number of agent interactions .
https://royalsocietypublishing.org/doi/10.1098/rs0s.210506 8 million London agents



Differentiable ABMs are being deployed across domains
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Scope of tutorial

* Preliminaries
* Background to automatic differentiation
* Implement a differentiable ABM

* Algorithms

* Techniques to calibrate and analyze differentiable ABMs
* Applications

* Real-world case study in New Zealand

* Systems
* Tooling to build and calibrate differentiable ABMs at scale



Scope of tutorial

* Preliminaries
* Background to automatic differentiation
* Implement a differentiable ABM



Automatic Differentiation



Stochastic Automatic Differentiation



Implement a Differentiable ABM



Scope of tutorial

* Algorithms
* Techniques to calibrate and analyze differentiable ABMs
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Dynamics and Interventions

COVID-19
TESTING & VACCINES

Health Interventions
(Testing, Vaccination, Lockdowns)

New Transmission Disease Progression

Financial Interventions
(Stimulus, PUA, PPP, FPUC)



Gradient-assisted calibration



Inner Loop: GradABM simulates county population using (67,0, ) for K steps
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Inner Loop: GradABM simulates county population using (67,0, ) for K steps
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Inner Loop: GradABM simulates county population using (67,0, ) for K steps
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Inner Loop: GradABM simulates county population using (67,0, ) for K steps

bit.ly/diff-abms

Aggregate predictions
from GradABM

Ground truth
case data
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Inner Loop: GradABM simulates county population using (67,0, ) for K steps

Or =01 — a_aL(g,y) Op = 0p — a—ag(ei’y)
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Inner Loop: GradABM simulates county population using (67,0, ) for K steps

Ground truth
case data
‘ \
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Or =0r — a_aL(y,y) Op = 0p — a—ag(eij)’y)
Mode 1: Calibrate parameters with

gradient descent (c-GRADABM)
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Inner Loop: GradABM simulates county population using (67,6, ) for K steps

Ground truth
case data

S I R M

Aggregate predictions
from GradABM
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Inner Loop: GradABM simulates county population using (67,0, ) for K steps

bit.ly/diff-abms

Aggregate predictions
from GradABM

Ground truth
case data
‘ CDC \




Outer Loop: Calib-NN predict infection parameters (67,6p ) for county population used in differentiable GradABM and is optimized using end-to-end gradient flow

Inner Loop: GradABM simulates county population using (61,6, ) for K steps
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Outer Loop: Calib-NN predict infection parameters (67,6p ) for county population used in differentiable GradABM and is optimized using end-to-end gradient flow

Inner Loop: GradABM simulates county population using (67,6 ) for K steps
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Outer Loop: Calib-NN predict infection parameters (67, 68p ) for county population used in differentiable GradABM and is optimizes using end-to-end gradient flow

Inner Loop: GradABM simulates county population using (67,0, ) for K steps

Stepl : Heterogenous county data used to

predict infection transmission and disease
progression (6r,6p) parameters

<
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United States'

Step2: In each
step, infection is
transmitted via
agent interaction
and disease stage
progress for
infected agents.

Step 3: Prediction
error (loss) is
computed between
aggregate statistics
of GradABM and
CDC case data

Aggregate predictions
from GradABM

Step 4: Gradient of

loss is computed via
backpropagation
through GradABM
and is used to
update (6r,6p)

Ground truth
case data
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Gradients enable fast calibration over emulators: 100k to 12 CPU hours

—— Observed Data
200 1 —— GradABM-JUNE
- JUNE
h Calibration with DNNs and
& 150 : i
3 gradient-based learning
L (~12 CPU hours)
>
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—
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Calibrate with ensemble learning to reduce overfitting

Inner Loop: GradABM simulates county population using (67, 8p ) for K steps
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Calibrate with ensemble learning to reduce overfitting

Y
N—

CDCR £

SEIRM\

SAFEGRAPH

Contextual # —_— "
N ¢
data 4'\\'&& ,\o%@

SEI RM

Mode 3: Calibrate generator , 'I‘ progress(f)p) ;
. . . . . .‘ — .‘
function jointly with gradient # i

descent (jdc-GRADABM)

bit.ly/diff-abms



Calibrate posteriors with variational inference

Inner Loop: GradABM simulates county population using (67,05 ) for K steps

l

@ RNN to Normalizing Flow

Mode 4: Calibrate with uncertainty

quantification (dc-GRADABM)
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Gradient-assisted sensitivity analysis



Sensitivity Analysis is critical for validation

The impact of uncertainty on predictions of
the CovidSim epidemiological code

Wouter Edeling', Hamid Arabnejad ©2, Robbie Sinclair3, Diana Suleimenova?,
Krishnakumar Gopalakrishnan®3, Bartosz Bosak?, Derek Groen?, Imran Mahmood?,
Daan Crommelin'® and Peter V. Coveney ®3¢

Epidemiological modelling has assisted in identifying interventions that reduce the impact of COVID-19. The UK government
relied, in part, on the CovidSim model to guide its policy to contain the rapid spread of the COVID-19 pandemic during March
and April 2020; however, CovidSim contains several sources of uncertainty that affect the quality of its predictions: paramet-
ric uncertainty, model structure uncertainty and scenario uncertainty. Here we report on parametric sensitivity analysis and
uncertainty quantification of the code. From the 940 parameters used as input into CovidSim, we find a subset of 19 to which
the code output is most sensitive—imperfect knowledge of these inputs is magnified in the outputs by up to 300%. The model
displays substantial bias with respect to observed data, failing to describe validation data well. Quantifying parametric input
uncertainty is therefore not sufficient: the effect of model structure and scenario uncertainty must also be properly understood.

Ensemble execution. Consequently, through the use of adaptive methods we make
the uncertainty analysis of CovidSim tractable, but our analysis nevertheless
required us to perform thousands of runs, each with its own unique set of

input parameters. Specifically, we used the Eagle supercomputer at the Posnan



Recap: Reverse-mode automatic differentiation

(f(@y,2) = (@ +y)- 2)




Sensitivity analysis via reverse-mode automatic differentiation

Reverse-mode automatic differentiation is independent of the number of parameters!!

[ Daily deaths ]




How effective really were lockdown policies?

Analyze retrospective decisions by reproducing seroprevalence studies in-silico

124 -+ —F— GradABM-JUNE
—J— Ward +21
10 A
< 8- \ T
Q -
(&) .
C
Q
S 61
(V)
o
4 -
I
AN 1
2_

18-24 25-34 35-44 45-54 55-64 65-74 75+
Age bin



What could we have done differently?

Design counterfactual lockdown policies with multiple constraints in-silico!

10°

Cumulative cases

10°

—— Optimal cost-effective lockdown
—— Naive cost-effective lockdown
—— Real lockdown

—— No lockdown

Mar Apr May



How sensitive was infection to ethnicity?

More infection among South Asians through households in contrast to white British people

Ethnicity "
Bl White —
University 1 mmm Mixed H.—'
B Asian B
B Black
W Other ‘—
School | —
e .
—_
HE—
—H
Household - E—‘
———
Company A
I
—-0.06 —-0.04 -0.02 0.00 0.02

Sensitivity of 4



How sensitive was infection to age?

Dominant infection spread through schools for 0-17 and university for 18-24

Age bin

s 0-17 B 45-54

University A e 18-24 B 55-64

'_-IZE—l B 25-34 ﬁ | 65-74

B 35-44 s 75+
School A
Household A
Company -

-0.2 -0.1 0.0 0.1 0.2 0.3
Sensitivity of f¢



What if we delay second dose of the COVID-19 vaccine?

Supply chain limitations and population behavior to design immunization policies

What if we delay second dose of COVID-19 vaccine?
BN GradABM
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What if we delay second dose of the COVID-19 vaccine?

Consider supply chain limitations and population behavior to design immunization policies

What if we delay second dose of COVID-19 vaccine?

& BN GradABM
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> Cc " was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the
o g gy gy g
- interval between the first and second COVID-19 vaccine doses from 3 to 12 weeksfaverted a median](calculated as the
C g 0.6 - median of the posterior sample) of| 58000 COVID-19 hospital admissiong (291000 cumulative hospitalisations
g i > [95% credible interval 275000-319000] under the 3-week strategy vs 233000 [229000-238000] under the 12-week
g - strategy) fand 10100 deaths|(64800 deaths [60200-68 900] vs 54700 [52800-55600]). Similarly, we estimated that the
@
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More details: Jade Room 3 on Friday at 10 am

- Composing with neural networks
- Using LLM as agents for million-scale simulations
- Modeling with private and distributed data
- Generating diverse simulation scenarios



Scope of tutorial

* Applications
* Real-world case study in New Zealand



Differentiable ABMs in action:
Case Study of New Zealand



Scope of tutorial

* Systems
* Tooling to build and calibrate differentiable ABMs at scale



Variational Inference with Blackbirds

github.com/arnaugb/blackbirds

pip install blackbirds



Bayesian inference
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Variational Inference:
Bayesian Inference as an optimization problem

1.0

0.8 A

0.6 A

0.4

0.2 A

0.0

bit.ly/diff-abms

1.Assume posterior can be

approximated by a family of
distributions

2.Optimise for optimal

parameters



Loss
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Build your own Differentiable ABMs with AgentTorch

github.com/AgentTorch/AgentTorch

pip install agent-torch



Using the AgentTorch API

execute simulation
talk to your simulation
customize agents (eg: LLM as agent)
customize population (eg: NZ -> NYC)



Execute a simulation with AgentTorch

Simple Python API. Get started in 3 lines of code. Massive Acceleration. "Al Compatible"

r

from AgentTorch.models import disease
from AgentTorch.populations import new_zealand

from AgentTorch.execute import Executor

simulation = Executor(disease, new_zealand)
simulation.execute()



Gradient-based learning with AgentTorch

Pytorch compatible. Optimize parameters. Compose with Neural Networks

from torch.optim import SGD

optimizer = SGD(simulation.parameters())
for 1 in range(episodes):
optimizer.zero_grad()
simulation.execute()
optimizer.step()
simulation.reset()



Visualize your simulation with AgentTorch

Interactive geo-plots and natural language interface

from AgentTorch.visualize import Visualizer
from AgentTorch.LLM.gqa import load_state_trace

state trace = load state trace(simulation)
visualizer = Visualizer(state trace)

visualizer.plot('agent_behavior')



Talk to your AgentTorch simulation

Understand the past. "brainstorm" for the future. Verify the data. Speculate reliably.

eo0e®
from AgentTorch.LLM.ga import SimulationAnalysisAgent
analyzer = SimulationAnalysisAgent(simulation, state_trace)

analyzer.query("Which age group has lowest median income, how
much i1s 1t?")

analyser.query("how are stimulus payments affecting disease?")



Customize agents in AgentTorch

Agents can be heuristic, LLMs or neural networks

@00
from AgentTorch.dataloader import DatalLoader

dataloader = DatalLoader(new_zealand)
dataloader._set_config_attribute('use_llm_agent', True)
dataloader._set_config_attribute( 'prompt’', AGENT_PROMPT)

Llm_simulation = Executor(disease, dataloader)
1lm_simulation.execute()



Build a new simulator:
Predator prey model



<Type 1> <Type A>

property1 property1

property2 property2

(nn.Parameter)

(nn.Parameter)

Environment

Internal

Interactions

Agent-Agent
Agent-Object

agent_torch.function {nn.Module)

(nn.ModuleDict) state_final

- state_init

' — IS Gl — - —

Substep N Emg

(nn.ModuleDict)

state(s)

|

Registry & Config

(nn.Modules)

!
|

Step K

step(s)

Runner
(nn.Module)

runner.init()

(reset the state before each step)

output = runner.trajectory
(parse current and previous states)

loss = loss_fn(output, truth
(calculate the loss)

im( runner ram r
(optimize learnable parameters)




Scope of tutorial

* Preliminaries
* Background to automatic differentiation
* Implement a differentiable ABM

* Algorithms

* Techniques to calibrate and analyze differentiable ABMs
* Applications

* Real-world case study in New Zealand

* Systems
* Tooling to build and calibrate differentiable ABMs at scale



Questions and Discussion



References

Systems
* Aframework for learning in Agent-based Models (AAMAS 2024)
* BlackBIRDS: Black-Box Inference foR Differentiable Simulators (JOSS 2023)

Methods

* Differentiable Agent-based Epidemiology (AAMAS 2023)

* Don't Simulate Twice: One-Shot Sensitivity Analyzes via Automatic Differentiation (AAMAS 2023)
* Private Agent-based Modeling (AAMAS 2024)

* Population synthesis as scenario generation for simulation-based planning under uncertainty (AAMAS 2024)

Applications
* Public health impact of delaying second dose of BNT162b2 or mRNA-1273 covid-19 vaccine (BMJ 2021)

* Composing and evaluating interventions with ABM (AAMAS 2024, Best Student Paper Award Finalist!)
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What about the data?



ABM still rely on stale, coarse-grained data

United States®
SAFEGRAPH
Census

ossssssm—— Bureau

limited granularity due to privacy concerns not scarcity of data.



Thousands of New Zealanders -y eg =
being contacted after personal T-Mobile ‘Put My Life in

details leaked in Covid-19 data Danger’ Says Woman
breach Stalked With Black

Market Location Data

lllinois Bought Invasive Phone Location Data From
s afeg ra ph Telecom giants are giving up customers' real-time location data to
stalkers and bounty hunters. Now, Motherboard speaks to a victim.

Report: Indonesian Government’s Covid-19 App Accidentally Exposes
Over 1 Million People in Massive Data Leak



Thousands of New Zealanders _ g =
being contacted after personal T-Mobile ‘Put My Life in

details leaked in Covid-19 data Danger’ Says Woman
breach Stalked With Black

Market Location Data

lllinois Bought Invasive Phone Location Data From
s afeg ra ph Telecom giants are giving up customers' real-time location data to
stalkers and bounty hunters. Now, Motherboard speaks to a victim.

Report: Indonesian Government’s Covid-19 App Accidentally Exposes
Over 1 Million People in Massive Data Leak
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how can we access high-resolution data, securely?



Conventional focus on "de-sensitizing the data" for simulation

Synthetic generation Differential Privacy

Learn distribution Add noise and
and re-sample release

high sim2real gap bad privacy-utility trade-off




need low sim2real gap + perfect privacy!

decentralize simulation >> centralize data

rethinking the paradigm of agent-based modeling!



secure multi-party computation



Alice Bob Charlie



Alice Bob Charlie
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n=11 Alice Bob Charlie

2 3 5
/7+5+1 2+0+1 3+1+1
7+2+3 5+40+1 1+1+1

1 6 3

1+6+3 1+6+3 1+6+3



n=11

answer

Alice

.
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7+2+3
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N
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SPMC in action

CONTACT
TRACING

o ticketmaster-

Settle transactions Trace infections Pick auction winners
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susceptibility of agent i
./
i 3 S;At
pl[n)f( t) =1 —exp Z 15(

J 1EeN(1)

\

neighborhood of agent i

transmissibility of

disease parameter
neighbor j

Infection probability for agent i



Privacy definition



Secure agent disease (S _i), demographics (I_j) and mobility trace (N _i) data

3|SIAt
Pint(t) = 1 = exp > L)

1€N(2)




Aggregate total transmissibility over all neighbors using additive secret sharing

=

B1SAL
Pint(t) = 1 = exp > L)

L [N

/

Additive secret sharing




Secure Simulation



Compliance probability
of neighbor j

550 /
pl(n)f()—l—oxp il Z Li(t)(1 —cj)

1eN(1)




How effective will lockdown policies be?

Evaluate interventions without leaking individual disease status or compliance preference

T T T T T T T T T T T T T

0 004F Compliance ]
s | 0%
2003} — 959 -
! 50%
© - — 7RG
.5 0.02 i 5% -
S 001}
: | "
000F |
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Timestep [days]




Secure Calibration



Calibrate the disease parameter to total infections at each time step

r = number of infections

p; = prob agent ¢ is infected

Z —Bernoulh Z Opi

We can approximate the total gradient by
summing the individual infection gradients (local
and private).




Calibrate simulation parameter \beta

Calibrate disease parameters without leaking an agent's state or interaction trace
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Secure Analysis



How does infection spread across age group and geography?

Analyze dynamics without leaking individual disease, demographic or geo-location

Ethnicity "
= White B N T T T
University 1 mmm Mixed —_ | |
H
Bl Asian B L - )
mmm Black 51.80 . 3000 g
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Protocol generalizes to any ABM with
"permutation-invariant" message aggregation

zi(t+ 1) = f | z(t). @ M(t), 0

See Section 2 in the paper (https://arxiv.org/pdf/2404.12983)



SMPC to Aggregate Message and Calibration Gradient

® h(z3)
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Growing trend of decentralized protocols across the world!

N\
LIPIP o ©

UNIFIED PAYMENTS INTERFACE Open Network for Digital Commerce n a m m a

vatri

Financial networks Supply chain networks mobility networks



Differentiable and Private Agent-based Models

github.com/AgentTorch/AgentTorch

Collaborate

ayushc@mit.edu



