
 Summary: What can we learn from a billion agents? 

 

We stand at a crossroads of two possible futures: one where advanced technology 

enables unprecedented human coordination and flourishing, as imagined in Star Trek, 

and another where it leads to fragmentation and inequality, as depicted in Elysium. 

Within a decade, we're projected to have over 60 billion AI agents augmenting human 

society - a transformation that will fundamentally reshape how we coordinate and 

collaborate at scale. 

 

To realize this future, we must move beyond current AI paradigms. While Large 

Language Models have dramatically enhanced individual capabilities, they remain 

constrained by human cognitive limits - the same barriers that have always restricted our 

ability to coordinate at scale. We need a fundamentally different approach: 

protocol-centric intelligence that progresses through five distinct levels. Starting from 

enhancing individual awareness, through coordinating immediate circles and managing 

bounded networks, to enabling global orchestration and finally shaping collective 

physical reality - each level expands our ability to coordinate while preserving individual 

choice. 

 

Imagine this progression in 2030: your AI assistant suggests adding calcium-rich foods 

based on your dietary patterns (individual awareness), coordinates your departure time 

with nearby shoppers (local interaction), connects with hundreds of stores to optimize 

delivery schedules (social coordination), processes millions of shopping patterns to 

prevent congestion (global orchestration), and ultimately shapes physical spaces and 

systems to enhance everyone's experience (physical integration). This isn't just about 

convenience - it's about enabling coordination at previously impossible scales. 

 

These advances bring significant risks: unprecedented surveillance, new forms of 

inequality through "protocol privilege," and the subtle erosion of individual choice. 

However, through privacy-preserving computation, decentralized control, and universal 

access by design, we can ensure these systems enhance rather than restrict human 

agency. The difference between Star Trek's abundance and Elysium's scarcity lies not in 

technological capability, but in how we enable human coordination at scale. This future 

isn't predetermined—it's a protocol we get to write. 

 



What can we learn from a billion agents?

1 Thesis: Scale, Complexity and Collective Behavior

Imagine a typical morning grocery run in 2030. As you check your phone, your personal AI assistant
suggests adding calcium-rich foods to your list, having noted your recent dietary patterns. Your phone
gently nudges leaving at 8:45 AM instead of your usual 8:30 - a suggestion being subtly coordinated
with hundreds of other shoppers in your neighborhood. As you navigate the store, the layout on your
augmented reality display subtly adjusts, not just to optimize your path but to orchestrate a delicate
dance of all shoppers, preventing congestion before it occurs. During a surge in local flu cases, your
path from door-to-door is automatically adjusted to maintain safe distances from other shoppers,
while the store’s ventilation systems adapt in real-time to minimize transmission risks.

This isn’t science fiction. As billions of AI agents begin to augment human society - managing
our calendars, guiding food choices, coordinating healthcare - we’re witnessing an unprecedented
transformation. This future isn’t about replacing human interaction with automation, but enabling
unprecedented coordination when we choose to come together. When combined with current
technology adoption trends, we are heading to a future where each person could have 10 or more
specialized AI agents, adding the equivalent of 60 billion "working agents" to our global systems
within a decade. This explosion in artificial agents presents us with a fundamental choice: will these
technological capabilities enhance or diminish human autonomy?

Figure 1: (a) Projected impact of AI agents on global workforce and economic growth, showing
acceleration paths to post-scarcity across different adoption scenarios (b) Potential societal outcomes
measured by Gini coefficient, contrasting possible futures between an equitable Star Trek-like society
and a stratified Elysium-like world. In the age of AI, will we build an Elysium or Star Trek society?

The stakes of this choice manifest vividly in competing visions of our technological future. The
Star Trek [19] universe depicts an optimistic 23rd-century where advanced coordination protocols
have eliminated material wants, allowing humanity to focus on exploration and advancement. In
stark contrast, the film Elysium [1] presents a dystopian 2154 where Earth is overpopulated and
impoverished, with wealthy elite enjoying advanced medical technology in an orbital habitat. The
tragedy isn’t technological limitation - their medical pods could heal any illness - but rather the failure
to develop protocols for equitable access and distribution. The difference - Star Trek’s abundance
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versus Elysium’s scarcity - lies not in technological capability, but in their ability to coordinate human
activity and resources at unprecedented scales.

Yet, throughout history, humans have been limited to meaningfully maintaining a few hundred stable
relationships - a constraint known as Dunbar’s number [12, 13]. Even in our hyper-connected digital
age, while we can theoretically access millions through social media, our cognitive architecture
remains fundamentally limited. As our technological reach expands exponentially through billions
of AI agents, our human capacity to understand and guide these interactions remains fixed. The
solution, however, lies not in making individual agents smarter or in replicating human cognition, but
in discovering protocols that enable beneficial coordination at scales far beyond human cognitive
limits - protocols that enhance rather than replace human agency.

From our morning grocery run to global pandemic response, the future of human flourishing depends
on our ability to coordinate effectively at unprecedented scales while preserving individual autonomy.
This requires a fundamental shift in how we think about artificial intelligence - moving from enhancing
individual capabilities to enabling better collective outcomes through what we call protocol-centric
intelligence.

2 From Natural Protocols to Human Coordination

Nature offers profound insights into solving massive-scale coordination challenges [14]. Consider
how army ants construct living bridges: each ant follows a remarkably simple protocol - if there’s
an ant in front, cross the bridge; if not, become part of the bridge. This minimal set of rules,
when executed by thousands of ants simultaneously, creates remarkably resilient structures that no
individual ant could comprehend or design. A back-of-the-envelope calculation reveals that the
strength-to-weight ratio of an ant bridge is 1,000-24,000 times higher than that of a human-built
concrete bridge [23].

Similar patterns emerge across diverse natural systems: multicellular organisms coordinate mil-
lions of cells through shared genetic protocols, fish schools balance individual survival with group
movement through simple interaction rules, and bacterial colonies achieve sophisticated collective
behavior despite limited individual capability and conflicting incentives [18, 25, 11]. Our greatest
societal challenges mirror this need for coordination beyond individual capability. The COVID-19
pandemic demonstrated how individual outcomes depend not on any single decision but on millions
of interlinked choices about testing, isolation, and vaccination. Climate change presents similar
dynamics, where individual benefits from carbon emissions create collective harm. These aren’t
failures of individual decision-making, but our inability to coordinate at scale.

Figure 2: (a) The Human Connectivity Barrier: cognitive limits of human recognition and relationship
maintenance (b) Evolution of agentic systems from operating within human cognitive bounds to
enabling coordination beyond these natural limits through protocol-centric approaches

Throughout history, humans have developed increasingly sophisticated protocols to transcend in-
dividual limitations. Early writing systems enabled asynchronous coordination across time and
space. Railway timetables synchronized society across vast distances. The Internet’s TCP/IP [4, 10]
protocols enabled global information exchange without central control. Yet each advance, while
expanding our collective reach, hit the same fundamental barrier: human cognitive limits. Medieval
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guild masters could train only a handful of apprentices. Railway operators could manage only a
limited number of routes. Even in today’s digital age, while social media theoretically connects
billions, meaningful engagement remains bounded by Dunbar’s number - our cognitive limit of
around 150 stable relationships and 1500 recognizable faces 1.

This constraint isn’t just about individual relationships; it fundamentally limits the complexity of
protocols themselves. Traditional protocols must remain comprehensible to the humans who design
and oversee them. Even sophisticated systems like financial markets or supply chains must ultimately
operate within human cognitive bounds. This creates a crucial tension: as our technological reach
expands exponentially through billions of AI agents, our human capacity to understand and guide
these interactions remains fixed.

The imminent emergence of billions of AI agents presents an opportunity to transcend these cognitive
limits entirely. Unlike historical protocols that had to remain "human-readable", agentic protocols can
operate at complexities and scales far beyond human comprehension while still producing beneficial
outcomes. However, current AI approaches focused on enhancing individual agent intelligence miss
this opportunity. Even sophisticated language models and multi-agent systems remain constrained to
human-scale interactions. We need a fundamental shift from making individual agents smarter to
enabling smarter interactions - a shift toward protocol-centric intelligence

3 The Path to Protocol-centric Intelligence

Current AI dominated by Large Language Models (LLMs) [3] has dramatically enhanced individual
capabilities - from writing assistance to coding help to personal scheduling. However, these systems
are designed to operate within human cognitive bounds, limited to enhancing direct person-to-person
interactions. Even recent works in multi-agent AI [20, 24, 2, 15] demonstrate sophisticated individual
behaviors but they remain constrained to small populations (10-1000 of agents). While these can be
deployed within human interaction patterns to - schedule your day, analyze your diet, or recommend a
shopping list - they fundamentally operate as amplified individual intelligences. This prevents utility
in real-world societal challenges involving millions of individuals. Here, LLM-based agents face the
same challenges that have always plagued human coordination: increasing complexity, conflicting
goals, and cascading unintended consequences [5].

Figure 3: Contrasting approaches of Large Language Models (LLMs) and Large Population Models
(LPMs): from data-centric capability enhancement to protocol-centric behavior orchestration

This limitation has sparked an emerging research direction: Large Population Models (LPMs) [9].
Rather than simply enhancing individual agent capabilities, LPMs aim to discover protocols that
can inform individual decisions with unprecedented global context. The distinction is crucial: while
LLMs process data to enhance individual capabilities, LPMs process protocols to shape collective
behavior. This enables LPM-agents to coordinate at unprecedented scales and rest on three key
innovations:

• Differentiable Population Simulation: Unlike traditional agent-based simulations that
merely predict outcomes, LPMs can trace how small changes ripple through entire pop-
ulations. When millions of agents interact, these systems maintain end-to-end gradients
that reveal unintuitive but effective coordination strategies [7, 22]. For instance, they might
discover that slightly adjusting just 5% of shoppers’ timing can prevent all congestion in a
neighborhood, or that prioritizing testing speed over accuracy during a pandemic leads to
better collective outcomes.

• Adaptive Protocol Fields: Traditional systems rely on fixed rules that quickly become out-
dated [17]. LPMs instead create "protocol fields" - living systems of rules that continuously

1https://www.theatlantic.com/family/archive/2021/05/robin-dunbar-explains-circles-friendship-dunbars-
number/618931/
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evolve based on real-world feedback [8]. These protocols adapt to changing conditions
while preserving individual privacy through decentralized computation. Imagine traffic
systems that don’t just predict congestion but actively prevent it with subtle, coordinated
adjustments across thousands of vehicles.

• Digital-Physical Bridge: LPMs bridge the gap between simulation and reality. They
first discover effective protocols through massive-scale simulation, then implement them
through decentralized networks of edge devices [6]. This creates a continuous feedback loop:
protocols shape physical behavior, real-world outcomes refine simulations, and simulations
improve protocols. When your phone suggests a slight adjustment to your schedule, it’s
participating in a living protocol network that’s continuously learning and adapting

This technological foundation enables a progression through five distinct levels of social orchestration.
Each level expands our ability to participate in increasingly sophisticated collective behavior while
preserving individual agency. Most importantly, these levels represent a path to transcend the
coordination limits that have constrained human societies throughout history - not by replacing
human decision-making, but by enabling unprecedented levels of beneficial coordination when we
choose to participate.

Figure 4: The Individual-Interconnection Transition: From Local to Global Context in Individual
Decision-Making. Lower levels (L1-L3) are LLM-based and focus on enhancing individual and
small-group capabilities. Higher levels (L4-L5) are LPM-based to enable coordination beyond human
cognitive limits by orchestrating millions of simultaneous interactions - in digital (L4) and physical
worlds (L5).

4 The Five Levels of Agentic Systems

AI agents will evolve to mirror how humans naturally process information and make decisions -
progressing from personal observation to increasingly wider circles of influence. This evolution
represents a crucial research direction: how can we develop AI systems that expand individual
capabilities while preserving human agency? We propose a five-level framework for this progres-
sion, transitioning from current LLM-based personal assistants to future LPM-enabled contextual
awareness.

To explore how this framework might manifest in practice, let’s project ourselves to 2030 and follow
two individuals navigating complex challenges through increasingly sophisticated AI agents: Sarah
Chen, a restaurant owner in Kansas City managing through a pandemic, and Michael Roberts, a
software engineer planning his first Coachella experience. Their hypothetical journeys illustrate both
the potential and challenges of each level.

Level 1: Personal Observation - Enhancing Individual Awareness Current LLM-based systems
with retrieval-augmented generation [16] already augment our sensing capabilities, like lane departure
warnings in cars. Sarah’s COVID analyst agent continuously monitors local transmission patterns,
translating complex epidemiological data into clear, actionable insights for her restaurant. Meanwhile,
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Figure 5: From Information to Orchestration: How agentic systems evolve in real-world scenarios.
Following two individuals - a restaurant owner navigating COVID-19 protocols and a music-lover
planning his trip to Coachella - we see how interactions progress from simple information gathering
(L1) through automated tasks (L2), small group coordination (L3), population-scale interaction (L4),
and finally to active shaping of physical behavior (L5). Each level reduces cognitive burden while
increasing the system’s capacity to coordinate beneficial outcomes at scale.

Michael’s festival expert analyzes years of Coachella data to create an optimal experience strategy
based on his preferences and comfort needs.

Level 2: Local Interaction - Coordinating Immediate Circles These systems handle specific
tasks with contextual intelligence similar to cruise control maintaining vehicle speed. Sarah’s
specialized agents automatically adjust supply orders based on safety protocols and manage staff
health monitoring. Michael’s travel agents coordinate accommodations and transport timing for his
immediate group, automatically securing better options when available, enabled by emerging tool-use
capability [21]

Level 3: Social Coordination - Managing Bounded Networks A key research milestone is ex-
tending current multi-agent LLM [26, 24] capabilities, to manage bounded networks effectively, like
traffic-aware cruise control responding to nearby vehicles. This will enable Sarah’s restaurant to
join a network of hundreds of nearby businesses, coordinating delivery schedules to minimize cross-
exposure and sharing real-time safety alerts. Michael’s agents seamlessly synchronize movement
patterns with his extended festival group, smoothly reorganizing meetups while respecting everyone’s
preferences. This level defines the limit of human cognition.

Level 4: Global Orchestration - Discovering Optimal Strategies These agents will help each indi-
vidual to coordinate synchronously with millions to optimize decisions, similar to how autonomous
vehicles route paths in well-mapped areas. This is being enabled by LPM frameworks like Agent-
Torch [9] which enable million-scale agent simulation to discover unintuitive patterns. When Sarah
asks "Which COVID tests should my staff take today?", her planning agent would process global
data to optimize testing strategies. At Coachella, Michael’s agent would analyze real-time movement
data from 250,000 attendees to identify optimal viewing spots and timing.

Level 5: Physical Integration - Shaping Collective Reality Our most ambitious research goal
envisions LPMs bridging digital recommendations and physical reality. Just as fully autonomous
vehicles might transform traffic patterns, L5 systems will create living feedback loops between
individual actions and physical reality. Sarah’s phone doesn’t just predict crowd patterns – it actively
coordinates with other shoppers’ devices to create dynamic "immunity networks," with testing stations
adjusting operations based on neighborhood transmission patterns. At Coachella, Michael’s agent
participates in peer-to-peer protocols that subtly coordinate crowd movements, preventing bottlenecks
while ensuring everyone stays comfortable.
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This progression represents a fundamental shift: from enhancing individual capabilities (L1-L3) to
enabling beneficial collective behavior at unprecedented scales (L4-L5). The key distinction lies in
the transition from L3 to L4-L5: while earlier levels operate within human cognitive bounds, higher
levels discover and implement protocols that transcend these limitations while preserving individual
choice.

5 L4-L5 Transition: From Understanding to Shaping Behavior

While the progression through Levels 1-4 represents expanding circles of influence, each level
fundamentally operates in the digital realm - discovering protocols to coordinate among AI agents.
Powered by LPMs’ ability to enable agents to coordinate millions of digital interactions, Level 5
marks a transformative leap: extending this orchestration into physical reality. The fundamental
distinction between Level 4 and Level 5 lies not in the number of coordinated interactions, but in their
nature - from coordinating digital information flows to actively shaping physical protocols themselves.
This isn’t just about processing more data or expanding coordination scope - it’s about transforming
how artificial intelligence enables individual agents to harmoniously interact with and shape physical
reality.

This distinction becomes clear through our examples. At Level 4, Sarah’s restaurant management
agent can process real-time pandemic data and interactions of millions to recommend optimal testing
strategies. But it’s limited to prediction and recommendation - when it suggests using rapid tests
despite lower accuracy, it’s because that’s the best coordination possible given how others might
behave. At Level 5, the agent doesn’t just predict behavior - it actively shapes physical interactions.
Testing stations dynamically adjust their operations, ventilation systems create coordinated airflow
patterns, and customer devices form living "immunity networks" that prevent transmission hotspots
before they form.

This evolution mirrors the evolution of navigation technology with self-driving vehicles. Traditional
navigation apps (with current Level 4 vehicles) can analyze traffic data from millions of vehicles to
suggest optimal routes to individual drivers. But being limited to digital coordination, they often
create "ghost traffic jams" when too many vehicles follow similar recommendations. Yet at Level 5
(as full self-driving emerges), each driver’s choices will become part of a living protocol network
- their individual routing decisions subtly influencing traffic signals, lane configurations, and other
drivers’ suggestions in real-time, creating naturally flowing traffic patterns without central control.

(a) Technology Readiness for agentic systems (b) The capability transition from L4 to L5 systems

Figure 6: Technology readiness and capability transition from L4 to L5 systems: from predictive
recommendations to active physical-world orchestration.

Similarly, Michael’s festival experience demonstrates this transition from digital to physical orchestra-
tion. At L4, his app processes crowd movement data to suggest optimal viewing locations. At L5, his
individual choices about when and where to move become part of a dynamic physical choreography
- his device participating in subtle peer-to-peer protocols that naturally prevent congestion while
preserving his freedom to explore the festival as he wishes.

The key breakthrough enabling this transition is the protocol-centric design of LPMs. Unlike
traditional AI that focuses on enhancing individual decision-making in isolation, LPMs discover
protocols that allow individual choices to naturally harmonize through local interactions. They
maintain privacy and agency while enabling unprecedented coordination across both digital and
physical domains.
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6 Risks and Net Benefits of Protocol-Centric Intelligence

The development of protocol-centric intelligence presents three fundamental challenges that must be
carefully addressed:

• Privacy and Control: While these systems enable decentralized coordination, they could
potentially enable unprecedented surveillance. A system designed to coordinate shopping
patterns could track movements; one designed for pandemic response could enable unwanted
social monitoring. The solution lies in privacy-preserving computation and decentralized
protocols that make such abuse technically impossible, not just prohibited.

• Digital Divide 2.0: Without careful design, these coordination capabilities could create
"protocol privilege" - where those with access to advanced protocols optimize their lives at
the expense of others. Similar to how internet access defines opportunities today, protocol
access could become a new axis of inequality.

• The Agency Paradox: In pursuing collective efficiency, poorly designed systems could
subtly restrict individual choice. The challenge is maintaining true optionality while enabling
coordination benefits.

However, the potential benefits of protocol-centric intelligence are transformative:

• Public Health: Rather than choosing between individual freedom and collective safety,
adaptive protocols could enable fine-grained pandemic responses that maintain both. Privacy-
preserving contact tracing networks could provide early warnings while protecting individual
privacy.

• Climate Action: Instead of relying on regulations or individual sacrifice, these systems
could discover protocols that make sustainable choices naturally advantageous. From
optimizing shared transportation to coordinating energy use, they could help address climate
change while improving quality of life.

• Urban Living: Cities could become living systems that adapt to inhabitants’ needs, prevent-
ing congestion before it forms and dynamically adjusting public spaces to enhance density
without sacrificing livability.

The net positive impact emerges from three key principles: i) Technical decentralization that prevents
central control, ii) Enhancement of human agency rather than replacement, iii) Universal access by
design to reduce inequalities.

7 Conclusion: Choosing Our Protocol-Centric Future

Return to our opening contrast: Star Trek’s abundance through coordination versus Elysium’s scarcity
through fragmentation. The difference lies not in raw technological capability - both societies had
advanced AI - but in their ability to coordinate human activity at scale while preserving individual
agency. As billions of AI agents enter our society, we face the same choice. Will these agents enhance
our autonomy by enabling unprecedented coordination, or diminish it through fragmentation and
control? The answer lies not in making individual agents smarter, but in discovering protocols that
enable beneficial collective behavior while preserving individual choice.

Our morning grocery run in 2030 could reflect either future. In one, AI agents subtly coordinate
millions of individual choices to prevent congestion, reduce waste, and enhance everyone’s experience.
In another, these same technologies create invisible barriers, privileging some while excluding others.
The difference lies in the protocols we discover and implement today.

The future of artificial intelligence depends not on replicating human cognition, but on enabling un-
precedented human coordination. By focusing on protocol-centric intelligence - built on principles of
decentralization, enhancement, and universal access - we can ensure that technological advancement
serves to expand rather than constrain human potential. The choice between abundance through
coordination and scarcity through fragmentation isn’t predetermined - it’s a protocol we get to write.
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