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Many of today's critical challenges—from pandemic response to supply chain 

resilience—emerge from the complex interactions of millions of autonomous agents. While 

current approaches can model sophisticated individual behaviors, they fail to capture the 

emergent phenomena that arise in real-world populations. This limitation stems from three 

fundamental challenges: defining and executing protocols at societal scales, integrating 

real-world data effectively, and bridging the simulation-reality gap. Large Population Models 

(LPMs) address these challenges through differentiable protocols that enable end-to-end 

learning across massive synthetic and physical agent networks [1]. 

 

Our first key innovation lies in protocol specification and execution at scale. Through the 

AgentTorch framework [3], we introduce a formal language for defining complex interaction 

protocols that compose via gradients in a unified computational graph. This enables simulation 

of millions of agents with sophisticated architectures—from simple heuristics to language 

model-powered behaviors [2], Our benchmarks demonstrate unprecedented computational 

efficiency: 600x speedup in simulation time (5 minutes vs 50 hours for 8M agents), enabling 

execution of up to 300,000 agent interactions per second on commodity hardware [8]. 

 

The second breakthrough establishes differentiability through both simulation environments 

and agent behaviors, enabling seamless integration of heterogeneous real-world data [6]. This 

innovation allows composition of hybrid neural-mechanistic pipelines that combine deep 

learning, agent-based modeling, and differential equations [3,6]. By maintaining end-to-end 

gradients, we achieve an 8300x acceleration in model calibration and enable rapid sensitivity 

analysis through gradient computation rather than repeated simulation [7]. The practical impact 

was demonstrated during COVID-19, where our models informed vaccination strategies by 

balancing epidemiological dynamics with economic outcomes across multiple countries [11,12]. 

 

Our third contribution extends these capabilities to physical agent networks through 

privacy-preserving protocols. Rather than centralizing sensitive data, we decentralize the 

simulation itself using secure multi-party computation. [6] This enables direct participation of 

physical agents while preserving privacy of individual states and interaction patterns. Through 

novel protocols for secret sharing and gradient estimation, we achieve "backpropagation 

through reality"—allowing end-to-end composition of synthetic and physical agent networks. 

http://github.com/AgentTorch/AgentTorch
https://www.youtube.com/watch?v=odCaKLCIDnk
https://drive.google.com/file/d/1Hjphcu3ebA871QQ_p4S0p9gGdFLt1cL6/view?usp=sharing


This bridges a fundamental gap between simulation and reality, enabling learning from 

real-world behaviors without compromising individual privacy. 

 

The framework has demonstrated significant real-world impact: optimizing vaccine distribution 

for New Zealand's 5 million citizens[9], tracking cascading disruptions across global supply 

chains[10,13], and modeling mobility and employment patterns for entire metropolitan 

areas[2,5]. Our results show that scaling multi-agent systems to societal challenges requires 

fundamentally new approaches to protocol design and execution. By maintaining 

differentiability across both synthetic and physical networks, LPMs enable systematic discovery 

and refinement of protocols that can help address critical collective challenges. 
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