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Abstract

As billions of Al agents begin to augment human
society, we face a fundamental challenge: coordi-
nating beneficial collective behavior at scales far
beyond human cognitive limits. This paper intro-
duces ”protocol-centric intelligence,” a paradigm
shift that focuses on discovering scalable rules of
interaction rather than enhancing individual agent
capabilities. We present a theoretical framework
with five progressive levels of agentic systems
that evolve from basic perception (L1) to reality-
shaping coordination (L5). The key technical in-
novation lies in Large Population Models (LPMs),
which maintain end-to-end differentiability across
two domains: simulated protocols executed over
millions of synthetic agents, and physical proto-
cols implemented through decentralized protocol
networks. By computing gradients through both
simulated and physical agents, LPMs enable sys-
tematic discovery and refinement of coordination
mechanisms at unprecedented scales. We demon-
strate through case studies in pandemic response
and crowd management how this approach tran-
scends traditional coordination limits while pre-
serving privacy and individual agency. We argue
that the future of artificial intelligence depends
not on maximizing individual agent intelligence,
but on discovering differentiable protocols that
generate collective behavior at population scale.

1. Thesis: Scale, Complexity and Collective
Behavior

In Isaac Asimov’s seminal Foundation series, mathematician
Hari Seldon faces a grand challenge: guiding the destiny
of the Galactic Empire (Asimov, 1951), which is on the
verge of collapse. Seldon develops “psychohistory” - a
mathematical science for predicting the behavior of large
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populations, allowing him to foresee the Empire’s collapse
and plan interventions to shorten the dark age that would
follow. While fictional, this concept captures a profound
truth: orchestrating collective behavior is the key to shaping
our shared destiny.

The world stands at the cusp of an unprecedented transfor-
mation. Over the last century, our civilization has grown at
a compound rate of approximately 1.4% annually (United
Nations, Department of Economic and Social Affairs, Pop-
ulation Division, 2023; Roser et al., 2019), from 2.09 bil-
lion in 1930 to 4.87 billion in 1980 to 8.18 billion in 2025.
While human population growth may plateau at 10.8 billion
by 2080, we are witnessing an explosion in a new digital
population: the rise of Al agents. Consider how this agen-
tic revolution might unfold: each person will soon have
multiple specialized agents handling different aspects of
their lives - managing calendars, guiding education, coor-
dinating healthcare, conducting financial transactions. The
rapid advancement of Al capabilities, as demonstrated by
breakthrough work in large language models (Brown et al.,
2020), suggests we’re entering an era of increasingly capa-
ble and numerous Al agents. When combined with current
technology adoption trends and deployment patterns, this
points toward a future where we could see the equivalent
of billions of Al agents integrated into our global systems
within a decade. As these agents proliferate from 2-3 per
person to potentially 10 or more, we could add the equiv-
alent of 60 billion ”working agents” to our global system
within a decade.

The growth of this agentic world presents us with a funda-
mental choice: will our technological capabilities enhance
or diminish human flourishing? Throughout history, hu-
mans have been limited to meaningfully maintaining a few
hundred stable relationships - a constraint known as Dun-
bar’s number (Dunbar, 1992; Hill & Dunbar, 2003). Even
in our hyper-connected digital age, while we can theoret-
ically access millions through social media, our cognitive
architecture remains fundamentally limited in its ability
to process these connections meaningfully. This creates a
critical tension: as our technological reach expands expo-
nentially through billions of Al agents, our human capacity
to understand and guide these interactions remains fixed.

This choice manifests vividly in competing visions of our
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Figure 1: (a) Reliable Al agents will increase the size of the “working population” that will include humans and their agents,
significantly, and transform all aspects of our $100T economy. This will accelerate economic progress, increasing the
earning per working person from 50% to over 10 times in the most aggressive scenario. The post scarcity economy arrives
after 2100 in “Moderate”, by 2080 in “Medium” and by 2060 in “Aggressive” scenario (see Appendix A) (b) Gini index
captures societal inequality where higher value is more unequal. The global average Gini coefficient is 0.67 with Slovakia
being most equal (Gini=0.24) and South Africa (Gini=0.95) being most unequal among large countries. With the advent of

Agentic Al, will we build an Elysium or Star Trek society?

technological future. The Star Trek (Okuda & Okuda, 2011)
universe depicts an optimistic 23rd-century where advanced
coordination protocols have eliminated material wants, al-
lowing humanity to focus on exploration and advancement.
Their replicator technology represents not just material abun-
dance, but sophisticated mechanisms ensuring equitable dis-
tribution and sustainable use. In stark contrast, the film
Elysium (ely, 2013) presents a dystopian 2154 where Earth
is overpopulated and impoverished, with wealthy elite en-
joying advanced medical technology in an orbital habitat.
The tragedy isn’t technological limitation - their medical
pods could heal any illness - but rather the failure to develop
protocols for equitable access and distribution. The differ-
ence lies not in technological capability, but in how these
societies coordinate and distribute their resources.

This stark contrast- Star Trek’s abundance through coor-
dination versus Elysium’s scarcity through fragmentation
- underscore our challenge clearly: will our technological
capabilities enhance or diminish human flourishing? The an-
swer lies not in the raw power of our technology, but in how
we orchestrate its use across populations. To approach this
challenge, we must first understand how nature has solved
similar problems of scale and coordination.

2. Nature to Networks: Interaction Protocols
in Complex Systems

Nature offers profound insights into solving massive-scale
coordination challenges, as extensively documented in foun-

dational studies of collective animal behavior (Holldobler
& Wilson, 1990). Consider how army ants construct living
bridges: when confronted with a gap in their path, each
ant follows a remarkably simple protocol. If there’s an
ant in front, cross the bridge. If not, become part of the
bridge. This minimal set of rules, when executed by thou-
sands of ants simultaneously, creates remarkably resilient
and resource-efficient structures that no individual ant could
comprehend or design (Reid et al., 2015).

This simple example illustrates the fundamental power of
protocols - rules of interaction that transform local actions
into sophisticated collective behavior. The true power of
protocols lies in how they simultaneously serve individual
and collective needs. For individuals, protocols extend their
effective reach far beyond their cognitive limits by provid-
ing clear rules for action in complex situations. Each ant
participates in building a stable bridge without needing to
understand the overall architecture. For collectives, proto-
cols enable coordination at scales that would be impossible
through direct communication or central control. The ant
colony builds and adapts structures, beyond any individ-
ual’s cognitive capacity, without any central planning or
sophisticated individual decision making. A back-of-the-
envelope calculation reveals that the strength-to-weight ratio
of an ant bridge is 1,000-24,000 times higher than that of a
human-built concrete bridge.

However, the ant bridge represents the simplest case - where
individual and collective interests naturally align. Nature
shows us that protocol discovery becomes increasingly chal-
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overcome this barrier and transform human coordination abilities. This requires a new perspective to scaling Al that focuses
on interconnections over intelligence. LPMs will enable this via a protocol-centric view to Al

lenging as incentive structures grow more complex. In
multicellular organisms, where all cells share identical ge-
netic interests, evolution has discovered reliable protocols
for coordinating millions of cells - all somatic cells can
only propagate through the germline (Michod, 2007). More
complex scenarios emerge in bacterial colonies and fish
schools, where protocols must balance individual survival
with group benefits (West et al., 2006; Couzin et al., 2005).
These systems demonstrate nature’s solution to a funda-
mental challenge: how to achieve sophisticated collective
behavior through simple, local interaction rules even when
individual and group interests partially conflict.

These natural systems offer important lessons for address-
ing complex societal challenges. Some coordination prob-
lems can be managed through competitive mechanisms,
where market protocols channel individual profit-seeking
into efficient resource allocation. However, many of our
greatest challenges present true social dilemmas where indi-
vidual and collective interests fundamentally misalign, and
no market mechanism can bridge the gap (Ostrom, 1990).
The COVID-19 pandemic demonstrates this complexity:
its course was shaped not by any single decision but by
millions of interlinked choices about testing, isolation, and
vaccination. Here, individual incentives for normal social
interaction conflicted directly with collective needs for iso-
lation and distancing. Similar dynamics appear in climate
change, where individual benefits from carbon emissions
create collective harm, and in humanitarian crises, which
often stem not from resource scarcity but from failures to
align distribution protocols.

What unites these diverse cases - from cellular organization

to global pandemics - is that effective protocols must work
across both massive scales and diverse incentive structures.
The key challenge lies in discovering protocols that can
coordinate billions of individual actions while adapting to
complex, often misaligned incentives. This principle be-
comes crucial as we consider how to coordinate beneficial
collective behavior at scales far beyond human cognitive
limits. Nature shows us this is possible, but we need sys-
tematic approaches to discover, validate, and implement
protocols at unprecedented scales.

This progression reveals why traditional Al approaches,
focused on enhancing individual agent intelligence, hit fun-
damental limits when addressing collective challenges. Cur-
rent large language models excel at processing information
and making individual decisions, but they cannot inher-
ently solve problems requiring massive-scale coordination.
Even current multi-agent systems, while showing promise
in small groups, remain constrained to human-scale inter-
actions. The path forward requires a fundamental shift in
focus - from making smarter agents to enabling smarter
interactions. The future of Al is protocol-centric.

3. The Dunbar Ceiling: From Intelligence to
Interconnection

Throughout history, each major civilization advance has
been marked by the development of new coordination pro-
tocols that transcend cognitive limits of individual minds.
These protocols succeeded by embedding intelligence in the
rules of interaction rather than requiring individuals to un-
derstand the entire system (Daston, 2023). Yet each advance
revealed a fundamental tension between protocol reach and
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human cognitive capacity.

Early writing systems weren’t just for recording information
- they were protocols that enabled asynchronous coordina-
tion across time and space. While these systems could dis-
seminate knowledge to millions, individuals could deeply
engage with only a few key texts.Mesopotamian clay tablets
reveal sophisticated protocols for trade and governance that
allowed cities to function beyond personal relationships, yet
merchants could maintain meaningful relationships with
only a handful of trading partners. Medieval guilds de-
veloped protocols for knowledge transfer that preserved
complex crafts across generations, but each master could
effectively train only a small number of apprentices.

The industrial revolution marked a quantum leap in protocol
sophistication. Railway timetables weren’t mere schedules -
they synchronized society across vast distances. Telegraph
networks weren’t just communication tools - they decou-
pled information flow from physical movement. Yet even
as these systems coordinated millions, individual operators
could only manage a limited number of connections and
routes. The digital age represents humanity’s most ambi-
tious protocol project, with the Internet’s layered protocols
like TCP/IP (Cerf & Kahn, 1974; Clark, 1988) enabling
global coordination without central control. Cryptocur-
rencies further demonstrate this evolution, showing how
carefully designed protocols can achieve consensus without
central authority.

Yet each advance, while expanding our collective reach, re-
mained fundamentally constrained by cognitive limits as
humans struggled to process the increasing complexity of
interactions. Even in our hyper-connected era, while social
media theoretically connects billions, meaningful engage-
ment remains bounded to few hundreds or thousands. This
barrier - known as Dunbar’s number - represents the cogni-
tive limit on meaningful relationships humans can maintain,
approximately 150 stable relationships and 1500 recogniz-
able faces !. This constraint isn’t just about individual rela-
tionships; it limits the complexity of protocols themselves,
as they must remain comprehensible to the humans who
design and oversee them.

The imminent emergence of billions of Al agents presents
not just a challenge of scale, but an opportunity to transcend
these cognitive limits entirely. Unlike historical protocols
that had to remain “human-readable”, agentic protocols
can operate at complexities and scales far beyond human
comprehension while still producing beneficial collective
and individual outcomes. When agents execute protocols
on our behalf, they can simultaneously process millions of
information sources, maintain complex relationships with

"https://www.theatlantic.com/family/archive/2021/05/robin-
dunbar-explains-circles-friendship-dunbars-number/618931/

thousands of other agents, and coordinate actions across
massive networks while adapting to real-time feedback

4. The Path for Protocol-centric Agentic Al

The key lies in building agentic systems that can orches-
trate billions of complex interactions. However, current
Al has largely focused on the opposite - maximizing indi-
vidual agent intelligence. While several recent works in
multi-agent Al like Smallville (Park et al., 2023), Concor-
dia (Vezhnevets et al., 2023), Project Sid (AL et al., 2024),
AdaSociety (Huang et al., 2024) demonstrate sophisticated
individual behaviors, they remain constrained to small pop-
ulations (10-1000 of agents) operating in purely synthetic
environments. These systems can be deployed within hu-
man interaction patterns - as personal assistants, tutors, A/B
testers, or task-specific helpers; but face inherent scalability
limitations. This prevents them from tackling real-world
societal challenges involving millions of individuals. Re-
cent studies validate these “limits of agency”, showing that
successful modeling of real-world phenomena requires pop-
ulation scale over individual sophistication. Empirical work
predicting city-wide behavior across New York City finds
that simpler agents at massive scale (8.4 million) consis-
tently outperform more sophisticated LLM-based agents
in limited numbers (Chopra et al., 2025). This validates
a key insight from nature: sophisticated collective behav-
ior emerges not from individual intelligence but through
interaction protocols operating at population scale.

Two recent breakthroughs point towards transcending these
limits. First, by making agent-based simulations differen-
tiable, we can compose diverse interaction protocols - from
mobility patterns to economic transactions - while maintain-
ing computational tractability at scale (Chopra et al., 2023b;
Quera-Bofarull et al., 2023; Chopra et al., 2024b). This
enables learning from historical data to establish realistic
baselines for outcomes and incentives. Second, advances in
privacy-preserving computation enable decentralizing the
agent-based simulation and bridge it with real-time behav-
ior (Chopra et al., 2024a; Garg & Chopra, 2024). These
protocols allow real individuals to participate in population-
scale coordination while preserving privacy, creating a cru-
cial feedback loop: synthetic protocols efficiently explore
possible dynamics, while physical protocols capture ac-
tual behavioral data and incentive structures (Chopra et al.,
2024a).

This progression leads to Large Population Models (LPMs),
which represent a fundamental shift from enhancing in-
dividual intelligence to discovering scalable coordination
protocols. LPMs combine: i) Differentiable agent-based
modeling to capture passive incentives through data-driven
learning at scale; ii) Decentralized physical protocols to
capture active incentives through real-world interaction; iii)
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Figure 3: A paradigm shift in Al systems: While LLMs focus on processing multimodal data to enhance individual capabili-
ties, LPMs focus on designing and implementing protocols to shape collective behavior. This represents a fundamental
transition from enhancing individual behavior to orchestrating population-scale coordination.
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Figure 4: The progression of protocol sophistication across agentic system levels. Lower levels (L1-L3) focus on enhancing
individual and small-group capabilities through traditional protocols. Higher levels (LL4-L5) enable coordination beyond
human cognitive limits through novel protocols that can orchestrate millions of simultaneous interactions. This represents a
fundamental shift from optimizing within human bounds to discovering entirely new forms of collective coordination.

Compositional architectures that jointly model and optimize
both synthetic and physical protocols (Chopra et al., 2024b;
Chopra & team, 2024). LPMs are already creating real
impact. They’re being used to help immunize millions of
people by optimizing vaccine distribution strategies (ESR,
2024), and to track billions of dollars in global supply chains,
improving efficiency and reducing waste (Adiga* et al.,
2024). The next section introduces a framework for how we
progress from intelligence-dominated systems (powered by
LLMs) to protocol-dominated systems (enabled by LPMs)
through five distinct levels.

5. Levels of Agentic Systems

The evolution of agentic systems follows a trajectory similar
to the development of autonomous vehicles, with each level

reducing human cognitive burden while increasing system
responsibility. This progression represents distinct levels
that progressively enhance human capability to engage with
and influence increasingly complex systems.

Level 1: Perceive
Agents help humans understand complex global contexts

These systems augment our sensing capabilities by inte-
grating massive information streams into actionable in-
sights, similar to how lane departure warnings enhance
driver awareness. When a restaurant owner checks COVID
risk levels, L1 systems combine epidemiological data, local
patterns, and business factors to provide clear situational
awareness. Retrieval-augmented generation exemplifies this
level (Lewis et al., 2020), integrating static knowledge with
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Figure 5: “Living under the Agentic API”: The Vitruvian Man represents one of humanity’s first systematic studies of
human physical limits and proportions, with Da Vinci precisely inscribing the human figure within a circle and square to
demonstrate natural constraints and mathematical harmony. We reframe this iconic image to illustrate how agentic systems
help transcend cognitive limits. While L1-L.3 systems operate within natural human cognitive boundaries (like the circle
containing Da Vinci’s figure), L4-L5 systems establish new protocols that enable coordination and collective intelligence at
scales previously thought impossible - by orchestrating interactions with millions of other humans globally through novel

interconnection LPM protocols.

real-time data. Intelligence focuses on processing informa-
tion, but coordination remains human-driven.

Level 2: Automate
Agents execute tasks with global awareness

These systems enable autonomous execution of specific
tasks with built-in contextual intelligence, comparable to
cruise control maintaining vehicle speed. They handle indi-
vidual transactions with global awareness, like procurement
systems that automatically adjust orders based on supply
chain patterns. Tool-augmented (or browser-use) language
models represent this capability (Qin et al., 2023)?, execut-
ing complex actions through API interactions while main-
taining contextual understanding. The key advance is ex-
tending from information processing to contextual action.

Level 3: Connect
Agents enable fluid coordination with immediate networks

These systems facilitate dynamic coordination within
bounded networks, functioning like traffic-aware cruise con-
trol responding to nearby vehicles. They enable synchro-
nized activities within local ecosystems ( 100s of agents),
such as restaurants coordinating safety protocols with neigh-
bors. Multi-agent frameworks like AutoGen (Wu et al.,
2023), Concordia (Vezhnevets et al., 2023) demonstrate this

“https://www.anthropic.com/news/developing-computer-use

Dimension State
Level 1: Perceive Stable
Level 2: Automate Current
Level 3: Connect Current
Level 4: Navigate Emerging
Level 5: Transform Future

Figure 6: Technology readiness for levels of agentic systems

capability, enabling structured collaboration between spe-
cialized agents - planning meetings and parties. However,
they remain constrained by human social scaling limits.

The Protocol-Scale Transition: The progression through
these first three levels shows how agentic systems can en-
hance human coordination within our natural cognitive
bounds. L1 extends our perception, L2 augments our ac-
tions, and L3 amplifies our social coordination. However,
these systems fundamentally operate within human cogni-
tive constraints - they can’t orchestrate behavior beyond
Dunbar’s number or process relationships outside human
social limits. The next two levels represent a fundamental
breakthrough: rather than enhancing individual intelligence,
these systems enable beneficial collective behavior at un-
precedented scales through sophisticated protocols.
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Level 4: Navigate
Agents guide decisions using population-scale insights

These systems discover optimal coordination strategies
through massive-scale simulation, similar to autonomous
vehicles operating in well-mapped areas. Through differen-
tiable agent-based modeling (Chopra et al., 2023b; Chopra
& team, 2024), they can simulate millions of interactions to
identify unintuitive patterns - like optimal restaurant reserva-
tion spacing to reduce congestion. While they can discover
effective protocols through simulation, implementation re-
mains primarily synthetic.

Level 5: Transform
Agents amplify individual actions into collective impact

These systems create living feedback loops between indi-
vidual actions and population-scale outcomes, analogous
to fully autonomous vehicles reshaping traffic patterns.
They integrate simulation with decentralized physical pro-
tocols (Chopra et al., 2024a) to enable secure, privacy-
preserving coordination at unprecedented scales. The break-
through is implementing discovered protocols through coor-
dinated physical and digital infrastructure while maintaining
rigorous safety guarantees.

Intelligence to Protocol: This progression from L1-L3
(intelligence-dominated) to L4-L5 (protocol-dominated)
marks a crucial evolution in human coordination capabil-
ity. Rather than pushing against cognitive limits by making
individual agents smarter, we transcend these limits by dis-
covering protocols that naturally guide beneficial collective
behavior at scale. Just as self-driving vehicles promise to
revolutionize transportation by removing human limitations
from the equation, protocol-centric systems promise to rev-
olutionize individual potential by enabling coordination at
unprecedented scales. The transition shows how agentic
systems can help humans participate effectively in increas-
ingly complex systems - moving from enhanced individual
capability (L1-L3) to meaningful participation in population-
scale coordination (L4-L5).

6. From Understanding to Shaping: The
L4-L5 Transition

The transition from Level 4 to Level 5 represents a funda-
mental shift in how protocols evolve - from data-driven re-
action to active reality-shaping through real-time adaptation.
This breakthrough enables us to transcend human cognitive
limits through protocol networks that bridge understanding
and action. While our focus is on enabling beneficial collec-
tive behavior at population scale, this progression mirrors
challenges in other domains like autonomous vehicles with
L5 self-driving will transform not just individual cars but
entire transportation systems.

To understand this transition, consider today’s traffic sys-
tems. Navigation apps like Google Maps and Waze can
predict congestion patterns and suggest alternate routes, but
fundamentally remain reactive - they can only respond to
emerging patterns based on historical data. In contrast, imag-
ine future traffic systems that could actively shape collective
behavior through coordinated protocols, helping individu-
als navigate more efficiently while contributing to overall
system optimization. Such systems wouldn’t just predict
bottlenecks - they would prevent them via synchronized ad-
justments to both individual recommendations and physical
infrastructure. When emergency vehicles need priority, they
can create “green corridors” - coordinating traffic signals
and routing nearby vehicles to maintain both emergency
response times and overall traffic efficiency. This same
conceptual leap - from understanding patterns to actively
shaping them - characterizes the transition we’re enabling
through Large Population Models.

Consider how this progression manifests in pandemic re-
sponse infrastructure. Level 4 operates through differen-
tiable agent-based models, allowing us to simulate millions
of synthetic agents while maintaining end-to-end gradients
through their interactions. These simulations help individ-
uals understand how their choices interact with collective
behavior and reveal counterintuitive protocols to align their
incentives. For instance, when individuals need to decide
on testing , L4 simulation can process multiple interaction
protocols simultaneously - from disease transmission dy-
namics to mobility patterns to local intervention strategies -
revealing that prioritizing testing speed over accuracy can
create better collective outcomes by enabling faster isola-
tion responses (Romero-Brufau et al., 2021; Chopra et al.,
2023a). However, these insights remain primarily predictive
- they can inform individual decisions but cannot directly
coordinate real-world response.

Level 5 achieves its transformative power by extending dif-
ferentiability from simulated to physical protocols. The key
technical innovation lies in coupling differentiable simu-
lations with decentralized agent-based models running on
physical devices. When a rapid test identifies a new infec-
tion, the system doesn’t just record this data - it dynami-
cally updates protocol implementation. Through privacy-
preserving computation, it can identify which subset of the
population in the affected area should activate contact trac-
ing capabilities, effectively creating targeted surveillance
networks that adapt to emerging transmission patterns. This
real-time protocol adjustment demonstrates how L5 systems
“backpropagate through reality’ - using observed outcomes
to continuously refine both simulation parameters and pro-
tocol deployment strategies. This isn’t just prediction - it’s
active protocol implementation that adapts based on real-
world feedback.
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Dimension Level 4: Orchestrate Level 5: Harmonize

Primary Domain Simulated environments Physical reality

Individual's Role System observer System shaper

Decision Support Shows possible outcomes Guides collective evolution

Infrastructure Works within existing systems Creates new protocols

Real-world Impact | Through recommendations Through direct integration

Feedback Loop One-way learning Continuous adaptation

Figure 7: L4 vs L5 Systems - From Understanding to Shap-
ing Reality. While L4 systems use simulation to understand
and recommend actions within existing infrastructures, L5
systems actively shape reality by orchestrating both digi-
tal interactions and physical protocols. This progression
mirrors how traffic systems might evolve from predicting
congestion to actively preventing it through coordinated
control of both routing algorithms and traffic signals.

The potential lies in creating a continuous feedback loop
between simulation and reality through protocol networks.
This coupling can manifest through diverse mechanisms -
from privacy-preserving gradient computation in contact
tracing networks (Chopra et al., 2024) to consensus pro-
tocols in payment systems to adaptive routing in mobility
networks. Essentially, synthetic protocols discover effec-
tive strategies through differentiable simulation, decentral-
ized protocols implement these strategies through privacy-
preserving computation on edge devices, and real-world
outcomes feedback to improve the simulations. When an
outbreak pattern emerges, the system doesn’t just predict its
spread - it actively reshapes transmission dynamics through
coordinated adjustments to testing station placement, ven-
tilation systems, and population mobility guidance. For
instance, testing facilities may dynamically adjust their op-
erations based on real-time transmission data. Building
management systems adjust ventilation based on occupancy
patterns. Vaccination strategies adapt to emerging variants
and changing population hesitancy. Most importantly, these
physical protocols maintain privacy and security while prop-
agating gradients back to the synthetic models, allowing
continuous protocol refinement without compromising in-
dividual data. Each individual’s participation becomes part
of a living protocol network that continuously adapts to
changing conditions while maintaining privacy and agency.

The key distinction between L4 and LS5 lies in their relation-
ship with reality. While L4 excels at discovering protocols
through simulation, L5 creates “living protocols” that adapt
and evolve through real-world implementation. This capa-
bility to actively shape collective behavior while preserving
individual agency and privacy represents a fundamental ad-
vance in human coordination capacity - one that will enable
us to transcend current cognitive limits through increasingly
sophisticated protocol networks. This progression from un-

derstanding to active orchestration characterizes the L4-L5
transition across domains with misaligned incentives. The
verification of these protocols, particularly as they begin to
shape physical infrastructure, presents new challenges that
we must carefully address as these systems develop. How-
ever, this ability to bridge simulation and reality - to not
just model but actively guide beneficial collective behavior
- represents a crucial step toward protocol-centric artificial
intelligence.

Connection to Mechanism Design: The progression from
L4 understanding to L5 shaping shares intellectual roots
with mechanism design (Maskin, 2008), particularly recent
work on algorithmic mechanisms for social good (Abebe &
Goldner, 2018; Koster et al., 2022). However, LPMs intro-
duce key innovations that enable unprecedented scale and
adaptivity. While traditional mechanism design focuses on
creating static rules that align incentives for relatively small
groups of agents, LPMs enable dynamic, population-scale
protocols jointly optimized across simulated and physical
agents. This advance manifests in three key dimensions:

First, while classical mechanisms must be fully specified be-
fore deployment, LPMs enable continuous adaptation based
on population feedback. Recent implementations like the
Kudu agricultural market system (Newman et al., 2018) and
mobile-based disease surveillance (Mutembesa et al., 2018)
demonstrate the potential for real-world mechanism deploy-
ment but lack systematic adaptation capabilities. LPMs
bridge this gap through differentiable protocols that evolve
based on observed outcomes.

Second, LPMs transcend the scale limitations of traditional
approaches. Current mechanism design, whether using fixed
rules or reinforcement learning (Koster et al., 2022), typi-
cally operates with 2-10 agents in synthetic environments.
Our differentiable agent-based modeling enables mecha-
nism design and validation at population scale while main-
taining computational tractability through gradient-based
optimization.

Third, LPMs enable truly decentralized implementation.
‘While recent work in blockchain-based mechanisms (Rah-
wan, 2018) and Society-in-the-Loop frameworks (Rahwan,
2018) (Rahwan, 2018) propose decentralized feedback, they
lack concrete paths to population-scale deployment. LPMs
solve this through a novel coupling: differentiable simula-
tions inform deployment strategies while real-world data
from protocol networks continuously refine the simulations.

Mathematically, this manifests as protocol fields: where
traditional mechanism design seeks a fixed protocol p € P
optimizing some social choice function f : S — R, LPMs
learn a protocol field ¢ : S — P that continuously adapts
based on population state. Making this field differentiable

(Vo = % . g—; . (%) enables efficient optimization across
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massive strategy spaces while maintaining privacy through
decentralized computation. The practical impact of this
approach becomes clear in Section G, where we see how
these advances enable sophisticated coordination in real-
world scenarios without sacrificing individual autonomy.

7. The Human Experience: From Information
to Orchestration

To understand how these systems might transform our daily
lives, let’s follow two individuals navigating complex real-
world challenges through increasingly sophisticated Al
agents working on their behalf.

7.1. Sarah Chen: Managing a Restaurant During the
Pandemic

Sarah Chen, a 32-year-old restaurant owner in Kansas City,
experiences how Al agents progressively enhance her ability
to run her business safely during COVID-19. Her L1 agent
acts as a personal COVID analyst, continuously monitoring
global data streams and local patterns to alert her about risks.
When a new variant emerges in nearby counties, it immedi-
ately assesses the implications for her restaurant, translating
complex epidemiological data into clear, actionable insights.
At L2, multiple specialized agents handle specific tasks
autonomously. Her inventory agent adjusts supply orders
based on changing consumer patterns and safety require-
ments. Her safety agent manages cleaning schedules and
staff health protocols, automatically updating procedures
when health guidelines change. Each agent handles com-
plex decisions while keeping Sarah informed and in control.
Her L3 agents work with neighboring businesses’ agents
to create a safer local ecosystem. They coordinate deliv-
ery schedules to minimize cross-exposure, share real-time
safety alerts, and collectively manage supplier relationships.
When one restaurant detects a potential exposure risk, all
connected businesses can respond promptly and appropri-
ately. At L4, Sarah’s planning agent leverages massive
simulations to discover surprising but effective strategies.
By analyzing millions of restaurants’ experiences, it identi-
fies counterintuitive insights - like how spacing reservations
by 22 minutes instead of the standard 15 reduces lobby
crowding by 40% while maintaining table utilization. These
discoveries come from recognizing patterns in data that no
human could process. With L5, Sarah’s agents actively
participate in shaping the community’s pandemic response.
Her ventilation system doesn’t just react to local conditions
- it works with neighboring buildings to create optimal air
flow patterns across the block. Her capacity management
agent coordinates with other restaurants to distribute dining
demand safely throughout the district. When an elevated
transmission risk emerges, her agents automatically adjust
operations as part of a coordinated community response that

Man, 54, Married
Boston, 2 adult children
Software Engineer
Attending Coachella

Woman, 32, Single
Kansas City, 1 young child

Restaurant Owner
Worried about COVID

Improve my facility's biosafety Reduce our wait time in crowds

Navigate How should | space bookings? What's the best viewing spot?

Adjust staff and supplier schedules Sync arrival with camp mates
Order tests and schedule cleaning

Book my tickets and rooms

What’s my current risk? What supplies do | need?

Figure 8: From Information to Orchestration: How agen-
tic systems evolve in real-world scenarios. Following two
individuals - a restaurant owner navigating COVID-19 pro-
tocols and a music-lover planning his trip to Coachella -
we see how interactions progress from simple information
gathering (L1) through automated tasks (L2), small group
coordination (L3), population-scale simulation (L4), and
finally to active shaping of collective behavior (L5). Each
level reduces cognitive burden while increasing the system’s
capacity to coordinate beneficial outcomes at scale.

protects both her business and public health.

7.2. Michael Roberts: Navigating Coachella

Michael Roberts, a 54-year-old software engineer from
Boston, sees how Al agents transform his first Coachella
experience from potentially overwhelming to smoothly or-
chestrated. His L1 agent serves as a personal festival expert,
analyzing years of Coachella data to create his optimal ex-
perience strategy. It considers everything from historical
crowd patterns to weather forecasts, helping Michael pre-
pare like a veteran attendee. L2 brings multiple agents
handling specific tasks - one managing accommodations
and transport timing, another monitoring ticket upgrade op-
portunities, and a third organizing his schedule and supplies.
When better options become available, his agents secure
them automatically while keeping him informed. At L3,
his agents coordinate seamlessly with his festival group’s
agents. Instead of endless group texts about meeting points
and schedules, the agents synchronize everyone’s move-
ments and preferences automatically. When plans need to
change, the agents smoothly reorganize meetups while re-
specting everyone’s interests. His L4 planning agent uses
festival-wide simulations to navigate efficiently. It discovers
optimal strategies by modeling millions of attendees’ behav-
iors - like learning that visiting water stations 10 minutes
before set changes avoids peak crowds, or identifying view-
ing spots that balance sound quality with crowd density. The
agent helps Michael make better choices by understanding
how the entire festival flows. With L5, Michael’s agents ac-
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tively help shape the festival experience. When he heads to
a popular performance, his agent doesn’t just predict crowd
movement - it participates in creating efficient flow patterns.
His agents work with the festival’s systems to subtly adjust
crowd distribution - perhaps delaying his water break by five
minutes helps prevent a bottleneck while ensuring he stays
hydrated. Each small adjustment contributes to smoother
festival flow while maintaining his perfect day.

The Emergence of Collective Intelligence These exam-
ples reveal how Al agents evolve from personal assistants
to shapers of collective behavior. Both Sarah and Michael
start with immediate individual concerns - pandemic safety
and festival navigation. Through increasingly sophisticated
agents, they become participants in larger, more effective
coordination networks. The progression shows how tech-
nology can enhance rather than replace human experience.
Each level maintains individual autonomy while enabling
better collective outcomes. L1-L.3 agents help people navi-
gate existing complexity. The crucial advance comes with
L4-L5, where agents first understand and then help shape
the behavior of entire populations. This transformation
suggests a future where technology helps us transcend tradi-
tional coordination limits while preserving personal agency.
Most importantly, these systems demonstrate how individ-
ual and collective benefits can align through well-designed
protocols. Whether managing pandemic response or festival
crowds, the right coordination mechanisms help everyone
achieve better outcomes than they could alone. This points
toward a future where technological advancement enhances
rather than diminishes human flourishing. Crucially, as we
develop Level 5 systems that shape reality through coordi-
nated protocols, we face a fundamental verification chal-
lenge: ensuring safety before deployment. This challenge
isn’t unprecedented - Byzantine distributed systems prove
consensus protocols before deployment (Ren et al., 2017;
Correia et al., 2011), and smart contracts verify economic
mechanisms before execution (Almakhour et al., 2020; Nam
& Kil, 2022). However, population-scale agentic systems
present uniquely complex challenges because they must
verify emergent behaviors that arise from millions of indi-
vidual decisions. Like neural networks, these systems may
be resistant to formal verification. Instead, we need new
frameworks that combine:

* Bounded verification: Proving critical safety properties
and invariants where possible

* Empirical validation: Developing rigorous metrics to
measure collective behaviors in simulation

¢ Incremental deployment: Creating standards for safely
scaling protocols while monitoring key social indica-
tors

These verification challenges are fundamental to realiz-
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ing L5 systems. While we cannot achieve mathematical
certainty, we must develop robust frameworks to validate
population-scale protocols before allowing them to shape
real-world behavior.

8. Conclusion

As we move toward a world with billions of Al agents, un-
derstanding different types of collective behavior becomes
essential. While traditional Al seeks to replicate human in-
telligence in machines, protocol-centric intelligence asks a
different question: how can we design rules of engagement
that enable beneficial collective behaviors to emerge natu-
rally at scale? The answer requires carefully distinguishing
between different classes of coordination challenges.

Some collective behaviors, like cryptocurrency networks,
emerge naturally through market mechanisms where in-
dividual incentives align with system goals. In these do-
mains, carefully designed protocols can achieve coordina-
tion without central control because competitive dynamics
(like mining rewards and market trading) naturally drive ben-
eficial outcomes. However, many of our greatest challenges
- from pandemic response to climate change to resource
conservation - represent fundamentally different coordina-
tion problems. These are social dilemmas where individual
and collective interests misalign, creating “tragedies of the
commons” that markets alone cannot solve (Ostrom, 1990;
Kollock, 1998; Pentland, 2014).

This is precisely where LPMs and their evolution from
L4 orchestration to L5 discovery become crucial. Unlike
market-based systems that rely on aligned incentives, LPMs
explicitly model how different protocols shape both individ-
ual choices and collective outcomes under various incen-
tive structures. Through massive-scale simulation, they can
discover and validate coordination mechanisms that help
bridge the gap between individual and collective interests.
For instance, when modeling pandemic responses, LPMs
don’t just assume rational individual behavior - they explore
how different testing, vaccination, and mobility protocols
might help align personal health choices with public health
needs (Romero-Brufau et al., 2021; Chopra et al., 2023a)

The path toward beneficial collective outcomes lies not in
blindly applying market mechanisms, nor in forcing cen-
tralized control, but in discovering protocols appropriate to
each domain’s unique incentive landscape (Helbing, 2012).
Through LPMs, we can systematically explore and validate
these protocols before deploying them in the real world.

This brings us back to Seldon’s vision in Foundation - not
just predicting large-scale behavior but actively shaping it
toward better outcomes through carefully designed rules of
interaction. Will we build Star Trek’s utopia or Elysium’s
dystopia? The answer lies not in the raw intelligence of
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our Al agents, but in our ability to discover protocols that
effectively bridge individual and collective interests across
diverse coordination challenges. The time to focus on this
protocol-centric future - with its full complexity and domain-
specific demands - is now.
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