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Abstract

Many of society’s most pressing challenges—from pandemic response to supply
chain disruptions to climate adaptation—emerge from the collective behavior of
millions of individuals making decisions over time. Large Population Models
(LPMs) offer an approach to understand these complex systems by simulating
entire populations with realistic behaviors and interactions at unprecedented scale.
LPMs extend traditional modeling approaches through three key innovations: com-
putational methods that efficiently simulate millions of individuals simultaneously,
mathematical frameworks that learn from diverse real-world data streams, and
privacy-preserving protocols that bridge simulated and physical environments.
This allows researchers to observe how individual choices aggregate into system-
level outcomes and test interventions before real-world implementation.
While current AI advances primarily focus on creating "digital humans" with
sophisticated individual capabilities, LPMs develop "digital societies" where the
richness of interactions reveals emergent phenomena. By bridging individual
behavior and population-scale dynamics, LPMs offer a complementary path in AI
research—illuminating collective intelligence and providing testing grounds for
policies and social innovations before real-world deployment.

1 Introduction

Many complex societal challenges - from pandemic risk to supply chain disruptions - emerge from
the interactions of millions of individuals making decisions over time. Understanding and addressing
these challenges requires computational tools that can: (1) simulate realistic populations at scale, (2)
learn from heterogeneous data streams, and (3) integrate with real-world systems.

Agent-based models (ABMs) offer a promising solution to capture these dynamics by simulating a
collection of autonomous entities (called agents) that act and interact within a digital world. ABMs
have proven useful across various domains, including epidemiology [5, 18, 16], economics [3, 4, 8],
and disaster response [7, 15]. Their bottom-up approach allows emergent phenomena to arise naturally
from simple rules, offering insights into how individual behaviors aggregate to create system-level
outcomes. However, their practical utility has been limited by three fundamental challenges:

• Scale: ABMs struggle to scale to realistic population sizes while maintaining sophisticated
agent behaviors. Recent work using large language models (LLMs) as agents has demon-
strated more human-like decision-making [22, 26], but is restricted to small populations of
25-1000 agents. Real-world policy decisions, however, require simulating millions of agents
with both rich behaviors and complex interactions.

• Data: ABMs face significant challenges when assimilating heterogeneous data sources at
scale. Current calibration approaches typically require computationally intensive sampling
methods and struggle to incorporate streaming data or handle high-dimensional parameter
spaces efficiently. The inability to seamlessly learn from diverse real-world data streams in
real-time significantly constrains ABMs’ predictive power.
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• Feedback: ABMs typically treat agents as purely synthetic entities mimicking real-world
counterparts. However, the increasing ubiquity of mobile and IoT devices creates opportuni-
ties for bidirectional feedback between simulated and physical agents. Realizing this poten-
tial requires frameworks that can handle both centralized simulation and privacy-preserving
decentralized computation - a capability lacking in traditional ABM implementations.

Contributions:

A. This paper introduces Large Population Models (LPMs) as an evolution of ABMs that overcome
these limitations through three key innovations:

• Compositional Design: LPMs enable efficient simulation of millions of agents on commod-
ity hardware, overcoming traditional scale limitations through composable interactions and
tensorized execution. This architectural innovation allows balancing behavioral complexity
with computational constraints, enabling realistic agent behavior even at population scale.

• Differentiable Specification: LPMs make simulations end-to-end differentiable, supporting
gradient-based learning for calibration, sensitivity analysis, and data assimilation. This
enables efficient integration of heterogeneous data streams and composition with neural
networks for improved prediction.

• Decentralized Computation: LPMs extend differentiable simulation and learning to dis-
tributed agents using secure multi-party protocols. This bridges the sim2real gap by allowing
integration of real-world agents while protecting individual privacy.

Figure 1: Performance benchmarking comparing computational efficiency of LPMs versus conven-
tional ABMs for simulating 8.4 million agents representing NYC’s population. LPMs demonstrate
orders-of-magnitude improvements in simulation (600x), calibration (3000x), and analysis (5000x)
runtimes, enabling previously infeasible large-scale agent-based modeling applications.

B. We also introduce AgentTorch, an open-source framework that makes these theoretical advances
of LPMs accessible and practical. AgentTorch uniquely integrates all critical capabilities needed
for large-scale agent modeling : GPU acceleration, million-agent populations, differentiable envi-
ronments, mechanistic modeling, LLM integration, and neural network composition. This allows
LPM capabilities to work synergistically: scalable architecture enables efficient gradient computation,
differentiability allows learning from distributed data, and decentralized protocols preserve these
capabilities when integrating real systems. AgentTorch models are deploying LPMs around the globe
- to help immunize millions of people by optimizing vaccine distribution strategies, and to track
billions of dollars in global supply chains, improving efficiency and reducing waste.

Through detailed case studies on pandemic response in New York City, we demonstrate how these
contributions enable more accurate predictions, more efficient policy evaluation, and more seamless
integration with real-world systems than traditional ABMs. This evolution in modeling capability
opens new possibilities for addressing complex societal challenges that emerge from individual
behaviors and interactions.

2 Preliminaries

Agent-based models (ABMs) offer a bottom-up approach to simulating complex systems by rep-
resenting how individual entities ("agents") act and interact within computational environments.
Unlike equation-based models that describe aggregate behaviors, ABMs capture the heterogeneity
of individual actions and local interactions, allowing emergent phenomena to arise naturally from

2



simple rules. To clarify terminology: in ABMs, "agents" refer to computational entities that represent
real-world individuals with autonomous behaviors, distinct from "AI agents" that execute tasks on
behalf of users. ABM agents are designed to mimic real-world behaviors through rule-based decision
processes, executed over discrete timesteps, ultimately revealing how individual decisions aggregate
to population-level outcomes.

2.1 Formal Representation

Consider a population of N individuals. We denote by si(t) the state of individual i at simulation
time t which contains both static and time evolving properties of individuals. For instance, s may
represent the age and disease status of humans in epidemiological models, or the account balance of
firms in a financial auction model.

As the simulation proceeds, an individual i updates their state si(t) by interacting with their neighbors
Ni(t) and their environment e(t), which can both also be time evolving. The neighborhood of an
individual can be specified using a graph, a proximity method or other methods.

We denote by mij(t) = M(sj(t), eij(t),θ, t) the message or information that individual i obtains
from their interaction with neighbor j. In an epidemiological model, this may represent the trans-
mission of infection from individual j to individual i, dependent upon the infectivity of j (sj), the
properties of the virus (θ) and the nature of the interaction (eij).

The individual’s outcome also depends upon their behavior, modeled as ℓ(·|si(t)). This behavior
function represents the decisions an individual makes given their state and environmental context—for
example, whether they choose to isolate, wear masks, or participate in social gatherings. Thus, at
step t, each agent updates its state as:

si(t+ 1) = f

si(t),
⊕

j∈Ni(t)

mij(t), ℓ(·|si(t)), e(t;θ)

 (1)

where ⊕ denotes an aggregation over all received messages. Similarly, the environment can also have
it’s own dynamics that depend upon the agents’ updates and actions,

e(t+ 1) = g (s(t), e(t),θ) . (2)

For instance, in an epidemiological model, e captures the dynamics of disease transmission, viral
evolution, vaccination protocols, etc.

The specific choices of f and g define the dynamics of the simulation and they are typically stochastic
functions which can be mechanistically specified or learned from data.

2.2 Core Tasks

ABMs enable three tasks that form the basis for understanding and analyzing complex systems:

Simulation involves initializing individual and environment states (s(0), e(0)) and recursively
applying the update rules in Equations 1 and 2 over multiple timesteps. While the state space of the
simulation is vast, we typically focus on aggregate outcomes represented as time series xt = h(s(t)).
For example, epidemiological simulations might track the daily count of infected individuals across
different demographic groups, while economic simulations might monitor unemployment rates and
market indicators. Formally, the simulation can be expressed as a stochastic map:

x = F (θ, s(0), e(0)), (3)

where F = (f, g) ◦ · · · ◦ (f, g) represents the composition of agent and environment update functions
repeated for T timesteps. The computational complexity of this process grows with both population
size and behavioral sophistication, creating a tension in traditional ABM implementations.

Calibration aims to identify parameters θ̂ (or a distribution over parameters) that make simulation
outputs consistent with observed data. Formally, calibration refers to the process of tuning structural
parameters θ so that simulation outputs x are compatible with given observational data y. In epidemi-
ological models, for instance, this entails determining values for parameters like the reproduction
number and mortality rates to align with observed infection or mortality data.
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Due to the stochasticity of ABMs and their partial observability, multiple sets of parameter values θ
may be compatible with the observed data y. Consequently, accurate uncertainty estimation around
calibrated parameters becomes essential. Incorporating expert knowledge (e.g. external data signals)
that may indicate preferences for certain regions of the parameter space is also important for robust
calibration.

These requirements can be addressed through a Bayesian framework, where parameter inference
corresponds to determining the posterior distribution over parameters, π(θ | y) using Bayes’ theorem:
π(θ | y) = p(y|θ);π(θ)

p(y) , where π(θ) is the prior distribution, p(y | θ) is the likelihood function,
and p(y) is the marginal likelihood. For ABMs, the likelihood function is typically intractable,
necessitating likelihood-free calibration algorithms.

In practice, calibration encompasses a spectrum of approaches, from manual parameter tuning guided
by domain expertise [24] to sophisticated Bayesian techniques that quantify uncertainty [16, 6]. The
optimization becomes challenging with computational complexity and stochasticity of F and the
high dimensionality of θ.

Analysis leverages calibrated models to understand system dynamics, explore counterfactuals, and
inform decision-making. What distinguishes ABMs in analysis tasks is their ability to trace macro-
scopic outcomes to specific agent behaviors and interactions, providing mechanistic insights that
purely statistical models cannot.

Retrospective analysis examines how observed outcomes emerged from interactions. For exam-
ple, [21] analyzed how sociodemographic factors contributed to COVID-19 disparities identifying
how risk varies across demographics. Counterfactual analysis explores "what-if" scenarios by varying
conditions or interventions. [24] evaluated delaying second vaccine doses to identify conditions
where such delays could reduce overall mortality—directly informing vaccination policies in multiple
countries. These capabilities address the Lucas critique—the observation that policy effects cannot be
predicted solely from historical data when agents can adapt their behavior in response to policies [20].
By explicitly modeling behavioral adaptation through ℓ(·|si(t)), ABMs capture how interventions
reshape the decision rules that generate outcomes, providing more robust guidance for policy design.

3 Case Study: COVID-19 in New York City

Imagine you are the public health leader for New York City during COVID-19. You want to
understand how the disease is spreading and implement interventions to stop it. Consider some
pertinent questions: When will the next wave emerge? Which test is better: PCR vs AntiGen? What if
we give a $500 stimulus check? The answers to these questions are shaped by the interplay of citizen
behavior, transmission dynamics and intervention design. By simulating their complex interactions
over a large population, we can understand feedback loops and then optimize strategies to control the
spread of disease. For instance, we can understand how individual behavior change (e.g. fatigue) can
seed a pandemic; and why prioritizing test speed over accuracy can be better for an individual, even
if it may not seem like it. Large Population Models provide a sandbox to design and evaluate such
policies, by simulating millions of autonomous agents at population-scale.

3.1 Population and Environment Definition

We construct a synthetic population of N = 8.4 million individuals representing New York City,
with demographic profiles derived from the 2022 American Community Survey. Each agent state
si(t) includes static attributes (age, gender, income, occupation) derived from census and dynamic
properties (disease status, employment status) that evolve through the simulation. Interactions
occur over household, workplace, and mobility networks, with recreational and workplace mobility
parameterized using Google Mobility trends [25].

The environment e(t) captures two interconnected systems: a contact-based disease model where
infection spreads through agent interactions, and a labor market model tracking employment and
financial conditions. Agents interact through networks Ni(t) constructed from household, workplace,
and mobility data, which serve as channels for both disease transmission and economic influence.
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3.2 Policy Question: Impact of Stimulus Payments

We focus on a specific policy question: "What if we give stimulus checks?". This intervention
generated complex effects during the pandemic through behavioral adaptation [19]. Stimulus pro-
grams introduced to mitigate economic hardship and encourage compliance with health measures
had unintended effects on labor markets and resource allocation [14]. This exemplifies the complex
feedback loops between individual behavior adaptation ℓ(·|si(t)), disease transmission through agent
interaction networks, and economic conditions affected by aggregate behavioral choices.

Figure 2: Trillion-Dollar Pandemic resource allocation breakdown demonstrating the critical role
of behavioral incentives in pandemic management. While $200B was allocated to infection control
measures (tests and vaccines), $800B was directed toward stimulus payments to influence citizen
behavior, highlighting the importance of modeling behavioral feedback loops in pandemic dynamics.

3.3 Fundamental Challenges in Population Modeling

Modeling these dynamics for NYC reveals three fundamental challenges that limit traditional ABMs:

Challenge 1: Scale vs. Expressiveness Trade-off: Simulating nuanced behavioral responses for 8.4
million individuals across multiple networks (household, workplace, transit) quickly exceeds practical
computational constraints using conventional approaches. Traditional epidemiological models can
simulate realistic population sizes but rely on simplified behavioral rules for agent and environment
that fail to capture the nuanced decision-making of individuals during a pandemic. Conversely, recent
LLM-based approaches demonstrate sophisticated adaptive behaviors but remain limited to small
populations of 25-1000 agents and capture unrealistic environments. This creates a fundamental
tension: sophisticated behavior OR population scale, but not both.

Challenge 2: Heterogeneous Data Integration: NYC health officials received diverse data
streams—clinical reports from hospitals, mobility patterns from cell phones, economic indicators
from government agencies, and survey data on compliance behaviors—each with different granu-
larity, reliability, and privacy constraints. Traditional calibration approaches struggle to efficiently
incorporate these diverse signals. Real-world data often comes with diverse uncertainties, reporting
frequencies, and granularities, making integration challenging without a unified framework. Privacy
constraints further complicate calibration, as critical data may be inaccessible due to regulations.

Challenge 3: Simulation-Reality Gap: Data privacy and availability constraints limit the quality of
simulations which provides limited visibility into individual behavioral. "Pandemic fatigue" reduced
compliance with health measures over time, and financial pressures from depleted savings altered
risk calculations despite unchanged disease threat. These complex behavioral adaptations created
a disconnect between model predictions and observed outcomes. Critical parameters in traditional
models often conflate behavioral and environmental factors, making it difficult to isolate the effects
of interventions. The lack of bidirectional feedback between simulated and real-world agents further
exacerbates this problem.

This pandemic scenario provides an ideal testbed to demonstrate capabilities because it requires un-
derstanding complex feedback loops between behavioral adaptation, disease dynamics, and economic
impacts at population scale—precisely the challenges that LPMs are designed to address.
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Figure 3: Research Pillars: LPMs alleviate the three challenges of ABMs by making simulations
scalable, differentiable and decentralized. In Public Health, this enables LPMs to capture disease
transmission and viral evolution across millions of agents; analyze outcomes by ingesting multi-modal
disease, behavior and intervention data and securely deploy policies while preserving privacy.

The pandemic scenario provides an ideal testbed to demonstrate capabilities because it requires un-
derstanding complex feedback loops between behavioral adaptation, disease dynamics, and economic
impacts at population scale—precisely the challenges that LPMs are designed to address.

4 Challenge 1: Scale vs Expressiveness Trade-off

Consider a day in the life of a New York City resident during COVID-19: they leave their apartment,
commute on crowded subway cars, and interact with coworkers. Throughout the day, they make
numerous decisions based on their circumstances—whether to wear a mask, get tested after possible
exposure, or reduce social activities due to financial constraints. Their behavior evolves based on test
results, symptoms, financial pressures, and social influences.

To understand pandemic dynamics, we need to model 8.4 million such individuals and their in-
teractions. This creates an immense computational challenge: representing realistic behavior for
millions of agents interacting across multiple networks quickly becomes intractable with traditional
approaches. Conventional epidemiological models like those referenced in [24, 6] can simulate
realistic population sizes but rely on simplified behavioral rules that fail to capture nuanced decision-
making during a pandemic and are not compatible with data-driven learning. Conversely, recent
LLM-based approaches [22] demonstrate sophisticated adaptive behaviors but remain limited to small
populations of 25-1000 agents and unrealistic environments - far from the scale needed to model
metropolitan dynamics.

This creates a fundamental tension: sophisticated behavior OR simulation scale, but not both. Yet the
critical insights emerge precisely from their interaction—how individual adaptive behaviors aggregate
to population-level outcomes, and how those outcomes in turn influence individual decisions.

Further, traditional ABM approaches often force artificial boundaries between these sys-
tems—epidemiologists focus on disease dynamics while economists model financial interventions,
each using different mathematical formalisms. Yet the critical insights emerge precisely from their
interactions: How does a $600 stimulus check affect isolation behavior among different demographic
groups? How might changed mobility patterns accelerate viral evolution? These questions require a
unified computational representation that can seamlessly compose multiple systems.
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Key Insight: We resolve this tension through a composable domain-specific language (FLAME) and
an agent archetype-based approach. FLAME decomposes complex environmental dynamics into
modular, composable substeps that can be efficiently executed through tensorized operations. For
agent behavior, our breakthrough insight is that while agent states are highly heterogeneous, their
decision-making processes often follow similar patterns based on demographic, socioeconomic, and
behavioral characteristics. This allows us to identify representative agent archetypes that capture the
essence of behavioral variations while dramatically reducing computational requirements. This is
represented in the following papers:

• Chopra et al. flame: a framework for learning in agent-based models (AAMAS 2024, Oral)
[link here]

• Chopra et al. on the limits of agency in agent-based models (AAMAS 2025, Oral) [link
here]

• Romero-brufau, Chopra et al. Public health impact of delaying second dose of BNT162b2
or mRNA-1273 covid-19 vaccine (British Medical Journal 2021) [link here]

4.1 Contribution 1: Composable Domain-specific Language

A comprehensive simulation must capture multiple interacting systems across different spatial and
temporal scales. For instance, an environment of pandemic dynamics, e, must simultaneously rep-
resent disease transmission events across contact networks (discrete-time models), individual viral
evolution (continuous-time with differential equations), mobility patterns (learned via neural net-
works) and stimulus interventions (discrete-event logic). These diverse dynamics must be coordinated
across individual, household, neighborhood, and city-level scales, at each step of the simulation.

We introduce FLAME [11], a domain-specific language that enables flexible specification of complex
environmental dynamics through composable interactions. This framework extends the environment
update function e(t + 1) = g(s(t), e(t), θ) defined in Section 2 to support multiple modeling
paradigms and interaction scales. FLAME addresses this challenge through three key capabilities:
modular substep definition, tensorized execution, and gradient-based composition.
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Figure 4: Domain Specific Language. The simulation has N citizens (Agents) that interact directly
and co-locate across pubs (Object) to spread the virus (Object). The simulator state is a collection
of properties that describe these entities, is initialized once, and transformed during T simulation
steps. Each step models the disease progression of infected agents (SEIRMProgression), vaccination
of susceptible agents (Vaccination), and transmission of new infections (NewTransmission) to
recursively transform the simulation state over these substeps. FLAME ensures gradient flow through
all simulation steps and enables automatic differentiation of any state property or substep function.

First, functional architecture: FLAME decomposes environment dynamics into modular substeps,
each represented as a functional mapping Φi : S → S that transforms the simulation state. Each
substep follows an observation-policy-transition pattern, where observation functions o : S → O
extract relevant state features, policy functions π : H → A determine actions based on observation
histories, and transition functions t : S × A → S update states accordingly. This decomposition
enables precise modeling of heterogeneous dynamics—a substep might represent virus transmission
events through a mechanistic contact model, while another might capture mobility patterns through a
learned neural network.

Second, tensorized execution: FLAME implements tensorized execution to simulate these substeps
across billions of potential interactions among millions of agents. For large populations, direct

7

https://dl.acm.org/doi/abs/10.5555/3635637.3662888
https://arxiv.org/pdf/2409.10568
https://arxiv.org/pdf/2409.10568
https://www.bmj.com/content/373/bmj.n1087


(a) (b)

Figure 5: Multi-fidelity simulations. (a) Implementation of the FLAME architecture within the
AgentTorch API, with code snippet for creating, executing, and visualizing simulations with 8.4
millions NYC agents. (b) AgentTorch API demonstrating integration of continuous-time ODE models
for immune dynamics with the discrete-time disease simulation.

simulation of all pairwise interactions quickly becomes intractable. FLAME transforms these
interactions into sparse tensor operations that can be efficiently executed on commodity GPU
hardware. This optimization relies on two principles: (1) small-world interaction networks, where
most agents interact with a limited subset of the population, enabling sparse tensor representations;
and (2) permutation invariance within substeps, where the order of operations in a simulation step
doesn’t affect the outcome. For instance, when modeling disease transmission across households on
a given day, the likelihood of infection for an agent depends on their total exposure, not the sequence
of individual contacts.

Third, differentiable design: FLAME ensures modularity of substeps via differentiable specification.
Formally, each environment substep Φi is differentiable if, given a smooth objective L = f(Φi(ST ))
defined on the simulation state, the gradient ∇θL exists and can be computed. Rather than approx-
imating gradients or replacing stochastic components with surrogate models, FLAME maintains
differentiability by applying reparameterization techniques to stochastic mechanisms. For example,
discrete contact events are reparameterized to preserve gradient flow while maintaining realistic
stochasticity.This differentiability of each substep enables gradient-based composition, via the chain
rule, and allows modular design of complex simulations. As we see later, this approach enables
efficient calibration, sensitivity analysis, and optimization across scales—allowing researchers to
investigate complex feedback loops like how viral properties might adapt in response to city-level
case statistics.

These capabilities dramatically transform our ability to model complex environments. By decompos-
ing intricate dynamics into composable, differentiable substeps and executing them efficiently at scale,
FLAME achieves a 200× speedup compared to traditional implementations when simulating 8.4
million agents [23]. This makes previously intractable scenarios computationally feasible, enabling
more accurate representation of the environments within which agents interact.

4.2 Contribution 2: Scaling LLM-guided Behavior for Million Agents

Having established a framework to efficiently model complex environments, we face the challenge
of simulating realistic agent behaviors within these environments. From Section 2, an agent’s state
update depends on both environmental factors and behavioral decisions, where ℓ(·|si(t)) models the
agent’s behavioral function.

In a realistic simulation, agents must make numerous context-dependent decisions throughout each
time step—whether to wear masks, get tested after potential exposure, reduce social activities
due to financial constraints, or seek vaccination. These behaviors evolve dynamically based on
extrinsic interventions - test results, lockdown mandates, and social influences from their network
or even intrinsic adaptations - fatigue, symptom progression, financial pressures. Capturing this
behavioral complexity is essential for realistic outcomes, particularly when behavioral adaptation
creates feedback loops with environmental dynamics.
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However, implementing sophisticated agent behavior at scale presents a fundamental computational
challenge. Recent approaches using Large Language Models (LLMs) [22] have demonstrated
impressive capabilities in generating context-aware, adaptive agent behaviors, but remain limited
to small populations of 25-1000 agents. First, naively applying such approaches to millions of
agents would require billions of model queries per simulation step—computationally infeasible and
economically prohibitive. Second, our analysis shows the ’limits of agency’ highlighting the crucial
of population-scale in shaping real-world outcomes [? ].

We resolve this dilemma through a novel agent archetype-based approach that dramatically reduces
computational requirements while preserving behavioral sophistication. Our key insight is that while
agent states are highly heterogeneous, their individual decision-making processes often follow similar
patterns based on demographic, socioeconomic, and behavioral characteristics. For instance, we
can jointly prompt agent in age group 31-40 instead of distinctly identify age as 31 vs 34. This
assumption is also practical since census data is often aggregated at demographic-level resolution
(giving age-group distribution, instead of age distributions, for cohorts). We formalize this insight
through the following methodology:

First, we identify representative agent archetypes based on key factors that influence decision-
making. For pandemic behaviors, these might include static attributes - age groups, income brackets,
occupation categories, and baseline compliance tendencies, or dynamic properties - disease status,
employment status, family obligations. We note two points here: i) the number of archetypes may
dynamically evolve throughout the simulation; ii) an agent may change it’s archetype associations
throughout the simulation. For a large population, the number of archetypes, at any time t, Kt is
typically several orders of magnitude smaller than the population size N .

Second, for each archetype k (∈ Kt) and action α (e.g., "decide to isolate"), we estimate the
probability distribution over possible decisions using:

pα(k, t) = E[ℓ(·|sk(t), e(t), θ)] (4)

≈ 1

M

M∑
j=1

ξj with ξj ∼ ℓ(·|sk(t), e(t), θ) (5)

where ℓ represents an LLM-based decision function queried M times to account for response
variability. By prompting representative archetypes instead of each unique individual agency, we
capture a distribution of how agents in the archetype respond to the current environmental context.

Third, each individual agent i samples a specific action based on the archetype k it associates with:

αi(t) ∼ Categorical(pα(k, t)) (6)

This approach enables modeling nuanced behavioral phenomena at metropolitan scale with just
K × A ×M queries (for K archetypes, A actions, and M samples per distribution) instead of N
queries (for N agents). For large-scale simulations where N ≫ K, this offers computational savings
of several orders of magnitude without sacrificing behavioral richness.

Importantly, this approach preserves both inter-group and intra-group heterogeneity. Even agents
belonging to the same archetype may make different decisions due to the probabilistic sampling,
while archetypes themselves capture major demographic and behavioral differences. Additionally, an
agent’s archetype assignment may change over time in response to evolving circumstances, enabling
the simulation to capture phenomena such as:

• Time-dependent adaptation ("pandemic fatigue"), where compliance with health measures
decreases over extended periods

• Context-sensitive responses to financial incentives that vary by socioeconomic status
• Social influence effects, where behavioral norms propagate through community networks

By maintaining heterogeneity through probabilistic sampling while drastically reducing computational
requirements, archetype-based behavior modeling makes sophisticated agent behaviors feasible at
population scale. This capability enables exploration of realistic behavioral interventions—a critical
requirement for designing effective public health policies.
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Figure 6: Modeling behavior for 8.4 million agents over 90 steps for $500 (a) LPMs model distinct
behavior for each agent in the simulation, at each simulation step. To reduce computational overhead,
we utilize archetype-based prompting where we prompt representative agent archetypes instead of
individual agents and individual agents sample their behavior from corresponding archetypes. This
allows to balance individual behavior with population-scale which improves simulation performance
compared to either prioritizing population-scale or individual agency. (b) AgentTorch Archetype API
code sample showing implementation of the behavior estimation framework for efficient large-scale
behavior modeling.

5 Challenge 2: Heterogeneous Data Integration

To use these simulations effectively, we need to calibrate them to real-world data. During the
pandemic, decision-makers faced a paradoxical challenge: data abundance coupled with information
scarcity. Public health departments received heterogeneous streams of information—clinical reports,
wastewater sampling, mobility patterns, social media sentiment—yet struggled to integrate these
signals into coherent, actionable insights.

This challenge manifested in several ways:

• First, each data source provided only a partial, noisy glimpse into the underlying dynamics.
Case counts were subject to testing availability and reporting delays; mobility data captured
movement but not purpose and were often a lagging indicator; economic indicators reflected
aggregate impacts but not causal mechanisms.

• Second, complex interdependencies between signals made interpretation difficult. For
example, declining mobility might indicate either successful isolation policies or economic
hardship forcing essential workers to change schedules. Distinguishing between these
scenarios requires simultaneous integration of multiple data streams.

• Third, the stochastic nature of both the disease process and human behavior introduces
substantial uncertainty. Traditional calibration approaches require prohibitively large num-
bers of simulation runs, particularly for models with millions of agents and hundreds of
parameters.

Traditional ABMs rely on offline calibration algorithms to train surrogate models on trajectories
sampled from the simulator using blackbox inference techniques like Approximate Bayesian Compu-
tation [13]. These techniques are sample inefficient (requiring large number of simulated trajectories)
and don’t scale to high-dimensional parameter spaces.

Key Insight: The power of LPMs emerges from the differentiability of our simulation framework.
Since each protocol in FLAME is differentiable, by the chain rule of calculus, their composition
maintains differentiability throughout the entire simulation. This transforms LPMs from black-box
simulators into first-class computational objects amenable to modern optimization techniques. By
applying automatic differentiation, we can efficiently compute gradients of simulation outputs (x)
with respect to parameters ∇θ(x), enabling gradient-based calibration and zero-shot sensitivity
analysis without requiring surrogate models or prohibitively large numbers of simulation runs.

This is demonstrated in the following publications:
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(a) (b)

Figure 7: (a) Differentiable calibration pipeline showing how LPMs transform traditional black-box
simulation into a differentiable computational object within neural parameter space, enabling gradient-
based optimization. (b) Custom operators implementing differentiable stochastic mechanisms that
maintain gradient flow through the simulation, preserving end-to-end differentiability for efficient
calibration.

Figure 8: Calibration protocol for a differentiable ABM. Gradient-based learning helps leverage
heterogeneous data sources, accelerates calibration time, improves robustness and was published at
AAMAS 2023 [10]. The visualized protocol has four stages - i) heterogeneous data (CDC, census,
behavioral, survey) is input to the ABM through DNN (calib-NN) to predict θT , θP ), ii) (θT , θP ) are
used run K forward steps of the fully-differentiable epidemiological model which simulates micro-
level infection transmission (Transmit) and disease progression (Progress) over high-resolution
individual contact networks. Disease statistics are aggregated (Aggregate) at end of K steps to
obtain the macro-level simulation output (ŷ). iii) Error between predicted ŷ and real-world case
statistics (y) is used to define a loss (L(ŷ; ŷ)), iv) Gradient of this loss is computed by automatic
differentiation through the differentiable ABM to update weights of calibNN

• Chopra et al. differentiable agent-based epidemiology (AAMAS 2023, Oral) [link here].
• Quera-bofarull, Chopra et al. Don’t simulate twice: one-shot sensitivity analysis via

automatic differentiation (AAMAS 2023, Oral) and (ICML-W 2022 Best Paper Award)
[link here]

• Garg and Chopra. Distributed Calibration of Agent-based Models (KDD Workshop 2024)
[link here]

• Chopra, Quera-bofarull and Zhang. differentiable agent-based modeling: systems, methods
and applications (AAMAS 2024, Tutorial) [link here]

5.1 Contribution 3: Rich Posterior Representation via Online Gradient-based Optimization

Traditional ABM calibration approaches like Approximate Bayesian Computation (ABC) or Neural
Likelihood Estimation (NLE) often use neural networks as surrogate models. However, these methods
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require offline sampling—running the simulator thousands of times to generate training data before
optimization can begin. This offline approach suffers from poor sample efficiency and may not
adequately explore the parameter space.

Our approach fundamentally differs by enabling online optimization directly on the simulation. We
represent the variational family Q using deep neural networks:

θ = Sample(DNNQ;ϕ)

We update these networks through online gradient-based learning that samples from the simulator
during optimization. This delivers several advantages. First, each simulation run contributes directly
to gradient updates, dramatically reducing the number of required simulation evaluations. Second,
gradient information guides the sampling toward informative regions of parameter space, unlike offline
approaches with fixed sampling schemes. Third, the neural parameterization captures multimodal,
skewed, and complex dependencies that simple parametric distributions cannot represent.

For gradient-based optimization, we employ generalized variational inference to approximate the
posterior distribution. The objective function is:

L(ϕ) = Eqϕ [ℓ(x(θ),y)] + w; KL(qϕ || π(θ))

The gradient update decomposes elegantly as:

∇ϕℓ(x(θ),y) = ∇ϕθϕ · ∇θx

This decomposition enables efficient optimization: we estimate the left term via reverse-mode
autodifferentiation and the right term using forward-mode autodifferentiation. This hybrid approach
produces an efficient Jacobian computation that scales well even for large-scale simulations.

This online gradient-based approach eliminates the need for surrogate models altogether, directly
optimizing the posterior representation while interacting with the simulation in real-time.

5.2 Contribution 4: Data Assimilation for Collaborative Calibration

Building upon the neural posterior representation, we extend our approach to incorporate heteroge-
neous data sources by conditioning the sampling process:

θ = Sample(DNNQ, data;ϕ)

This conditional generation framework provides several key capabilities.

• Multi-task Calibration: First, the neural network can ingest diverse data types including
clinical reports, mobility patterns, and demographic information, extracting relevant features
to inform parameter distributions. By conditioning on simulator-specific contexts, the same
network architecture can be trained to calibrate multiple simulators simultaneously. This
enables knowledge transfer across related domains and improves data efficiency. (figure 8)

• Distributed Calibration Second, when sensitive data is siloed across institutions, we can
optimize the network parameters through federated or split learning approaches. Each orga-
nization maintains local data while contributing to global parameter inference, addressing
critical privacy concerns (figure 9)

The data assimilation approach maintains all the benefits of rich posterior modeling from the previous
section - the conditional distributions remain expressive and high-dimensional, avoiding restrictive
assumptions about distribution shape or parameter independence. By allowing heterogeneous data
sources to influence the parameter generation process directly, we enable more robust calibration that
can adapt to complex, multi-modal evidence.

5.3 Contribution 5: Zero-shot Sensitivity Analysis via AutoGrad

A significant advantage of making the original simulation differentiable—rather than building a
differentiable surrogate—is the ability to perform sensitivity analyses without additional simulation
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Figure 9: Distributed Calibration: We execute calibrate with contextual data distributed across
multiple clients. To achieve this, we split CalibNN between the clients and server to ensure calibration
on multi-modal data, without centralizing siloed information. Each client uses its local data to generate
embeddings (in orange) which are transmitted to server and used to predict structural parameters
(θT , θP ) to execute the simulation

Figure 10: Comparative performance analysis between traditional surrogate-based calibration and
direct simulation-based calibration, demonstrating how LPMs’ differentiable approach provides
substantial computational advantages: calibration time reduced from 100,000 hours to 20 minutes
(3000x speedup) and analysis time reduced from 5,000 hours to 10 seconds (5000x speedup). This is
possible since LPMs can: (i) compose multi-modal external data to explore calibration, (ii) execute
sensitivity analysis using gradient trace in the computation graphs.

runs. After a single forward pass, we can compute exact partial derivatives of any output metric with
respect to input parameters:

∂M
∂θi

These derivatives are already computed and stored in the computational graph during the forward
simulation, making them available "for free." This direct differentiation approach fundamentally
differs from traditional sensitivity methods that require building a surrogate model from thousands of
simulation samples, running additional simulations to estimate parameter sensitivity, and accepting
approximation errors introduced by the surrogate.

By differentiating the actual simulation rather than an approximation, we eliminate surrogate mod-
eling errors while dramatically reducing computational costs. This zero-shot capability enables
simultaneous sensitivity evaluation for all parameters, precise quantification of parameter influence
without approximation errors, sensitivity information derived from the actual simulation mechanics
rather than an emulator, and no additional simulation runs required beyond the initial calibration.

This approach represents a fundamental shift in how sensitivity analysis is conducted for complex
simulations, making comprehensive validation practical even for large-scale models with millions of
agents. The ability to quickly identify influential parameters and quantify their effects supports both
model refinement and transparent communication of results to decision-makers.
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6 Challenge 3: Simulation-Reality Gap

The scalable and differentiable simulation approaches we’ve developed in previous sections enable
modeling millions of synthetic agents with sophisticated behaviors. However, these innovations in
computational efficiency are of limited utility if the quality of underlying data is poor. Currently, agent-
based simulations rely primarily on aggregate census and mobility data that has been anonymized [9]
or made differentially private [2], significantly limiting model expressiveness and predictive power.

The utility of simulations is hence limited in informing real-world interventions due to a persistent
gap between simulation insights and operational implementation. While our models can simulate
complex behaviors at scale, they often rely on synthetic or highly anonymized data that insufficiently
captures the granularity of real-world interactions.

During COVID-19 pandemic, health authorities attempted to close this sim2real gap by capturing
real-time individual data via contact tracing apps. However, this approach faced two key limitations:

• Privacy concerns limit data quality: Attempts to centralize data from contact tracing apps
led to significant privacy breaches - with sensitive mobility or health data of individuals was
leaked and misused for surveillance [1, 17, 12]. These incidents reduced adoption rates and
led to stricter privacy regulations, resulting in highly anonymized or synthetic data that lacks
the granularity needed for accurate simulations.

• Timeliness challenges prevent proactive modeling: By the time data is collected,
anonymized, and integrated into centralized simulations, the world has changed. Contact
tracing apps could notify users about past exposures, but cannot support forward-looking
simulation tasks like exposure management, intervention evaluation, or risk minimiza-
tion—activities that require real-time data integration.

This creates a fundamental tension: bringing data to simulations introduces privacy vulnerabilities
and time delays that significantly diminish utility, yet simulations require detailed, current data
to provide actionable insights. The tension between privacy, timeliness and effectiveness severely
limited adoption-with contact tracing apps reaching only 21% of the US population at peak usage.

Consider the COVID-19 response: contact tracing apps could notify users of exposure but lacked
the simulation capabilities to answer critical questions like "How can I minimize future risk?" or
"Which interventions would most effectively reduce community transmission?" By the time contact
data reached central modeling teams for analysis, the dynamics had already shifted, making insights
outdated before they could be implemented. These challenges reflect a deeper issue—our inability to
create a secure bridge between simulation models and the real-world agents they represent.

Key Insight: The ideal solution is not to bring data to simulations, but rather to bring simulations
to data—enabling secure, decentralized computation directly where data resides while maintaining
individual privacy. LPMs introduce a dual notion of an agent - an entity that can exist in both synthetic
and physical environments. The key innovation is extending differentiable simulation capabilities
to distributed agents while preserving individual privacy, allowing simulations to operate on fresh,
granular data without introducing privacy risks. We achieve this through additive secret sharing
which allows secure computation of simulation outputs and gradients.

This is represented in the following publications:

• Chopra et al. Private Agent-based Modeling. (AAMAS 2024, Oral) [link here]

6.1 Contribution 6: Decentralized Modeling with Physical Agents

We introduce novel protocols that enable secure, decentralized simulation, calibration, and analysis of
agent-based models. Rather than centralizing sensitive data, our approach leverages secure multi-party
computation (MPC) to perform model operations directly where data resides—on individual devices
or institutional systems—while maintaining privacy guarantees.

This conceptualization transforms population modeling from a retrospective analysis tool into an
integrated component of adaptive response systems. This addresses both the privacy and timeliness
challenges of traditional approaches, enabling simulations to operate on fresh, granular data without
introducing privacy risks. With LPMs, we can now - estimate personalized risk based on current
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contact patterns, calibrate disease models using privacy-preserved individual-level data, evaluate
policy interventions without compromising individual behavioral response.

Specifically, in LPMs, FLAME protocols preserve the same mathematical properties in decentralized
computation as a centralized simulations without requiring agents to reveal their private attributes or
interactions. This enables LPMs to extend differentiable simulation capabilities to distributed agents
while preserving individual privacy and simulation accuracy.

Formal Notation: Consider the base formulation in Equation 1 and two critical privacy-sensitive
elements emerge:

1. Agent state variables si(t), which may include personal attributes like health status, demo-
graphic information, or location

2. Neighborhood interaction data
⊕

j∈Ni(t)
mij(t), which reveals both social connections and

transmission pathways

In the context of an epidemiological model, imagine the transmission protocol of a contact-based
disease simulation where an agent’s infection probability depends on their interactions with potentially
infectious neighbors. Specifically, agent i updates its state following Equation 3 with message function
defined as:

Mij(t) = Ij(t) (7)

where Ij(t) is the infected status of neighbor j (0 or 1). The probability of disease risk for agent i is
then:

p
(i)
inf (t) = 1− exp

−βSi∆t

ni

∑
j∈N(i)

Ij(t)

 (8)

where N(i) is the set of neighbors of agent i, Si is the susceptibility of agent i, ni = #N(i) is the
total number of neighbors, ∆t is the duration of the time-step, and β is a structural parameter called
the effective contact rate.

Computing this probability directly would reveal both the infection status of each neighbor and
the complete neighborhood structure—creating significant privacy risks. Centralized simulations
typically handle this by using coarse, noisy approximations of mobility and contact patterns, which
significantly limits model fidelity.

Additive Secret Sharing for Simulation Outputs and Gradients: We overcome this challenge
through additive secret sharing protocols that enable computation over sensitive data without revealing
individual values. The key insight is to divide a secret input into multiple shares such that the secret
can be reconstructed only when a sufficient number of shares are combined.

Consider N agents holding private values si (such as infection status). We want to compute the sum∑
i si without any agent j acquiring knowledge about sk ̸=j . Each agent i samples N − 1 random

numbers, rij ∼ U{0, n− 1}, such that the input is divided into N shares, sij defined by:

si =

N∑
j=1

sij (mod n) =

N−1∑
j=1

rij +

si −
N−1∑
j=1

rij

 (mod n) (9)

Each agent distributes these shares (keeping one) and locally performs:

σk =

N∑
i=1

sik (mod n) (10)

The final result can be securely reconstructed as S =
∑

k σk (mod n).

Applied to our disease transmission example, this enables each agent to compute their infection
probability without learning the actual infection status of any specific neighbor.
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(a) (b)

Figure 11: (a) Secure computation architecture showing how LPMs enable secure aggregation of
neighborhood messages and gradients through additive secret sharing, maintaining privacy while
preserving simulation accuracy. (b) AgentTorch API for decentralized simulation deployment, demon-
strating how simulation logic can be mapped to distributed physical agent nodes while maintaining
privacy guarantees.

Similarly, for calibration and analysis, each agent can compute the gradient ∇θx, where x is the
number of daily infections and θ = β. We note that this gradient can be approximated by the gradient
of the average number of new infections with respect to β,

∂xt

∂β
≈ ∂ E[∆I(t)]

∂β
=

N∑
i=1

χi(t) exp(−χi(t)/β), (11)

where

χi(t) = exp

−β Si∆t

ni

∑
j∈N (i)

Ij(t)

 . (12)

Finally, these gradients ∇θh(si(t)) computed locally, and these can be securely aggregated through:

∇θxt =
⊕
i∈A

∇θ(h(zi(t))) (13)

This approach maintains the mathematical properties of a centralized simulation while preserving
privacy, enabling sophisticated modeling capabilities without compromising security.

7 Open Problems

Large Population Models is an emerging research direction with several problems at the intersection
of agent-based modeling, decentralized learning and machine learning. I provide a list of ideas with
contextual motivation following from the tasks above:

7.1 Scalable Agent-based Simulations

This pillar focuses on efficiently simulating millions of interacting agents.

Problem 1: Group Archetypes The individual-based archetype approach fails to capture the
interdependent nature of decision-making within social units. During the COVID-19 pandemic,
we observed that household-level decisions regarding stimulus spending, isolation behaviors, and
vaccination timing emerged from complex intra-group negotiations rather than independent individual
choices. Current LPM implementations sample agent decisions independently, which misses critical
correlation structures and leads to unrealistic emergent behaviors, particularly when modeling
economic interventions like stimulus payments that target household units rather than individuals.
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Problem 2: Formal Verification of Simulations The FLAME domain-specific language currently
relies on empirical validation rather than formal guarantees, creating potential risks when composing
heterogeneous modeling paradigms (discrete events, continuous dynamics, stochastic processes)
in high-stakes policy simulations. During the NYC pandemic modeling, we observed numerical
instabilities and unexpected emergent behaviors when combining economic, mobility, and disease
transmission substeps, raising questions about whether these compositions preserved critical invariants
across simulation components. The fundamental challenge remains: what spatial resolution to
simulate each substep at?

7.2 Differentiable Agent-based Simulations

This pillar focuses on efficiently computing simulation gradients over synthetic agents.

Problem 3: Gradient Estimators for Discrete Randomness LPMs frequently involve discrete
stochastic decisions (e.g., whether to isolate after exposure, or whether to adopt a contact-tracing app),
yet current gradient-based optimization approaches struggle with these non-differentiable components.
In our NYC case study, calibration of behavioral parameters governing binary decisions introduced
significant variance in gradient estimates, leading to unstable optimization and requiring excessive
sampling to achieve reliable results. This fundamentally limits our ability to efficiently calibrate
LPMs with realistic discrete choice components.

Problem 4: Simulator as Predictor Despite LPMs’ mechanistic interpretability advantages,
their adoption in decision-critical contexts is hindered by the perception that black-box time-series
forecasting models achieve superior predictive accuracy. During COVID-19 response, NYC officials
often had to choose between interpretable but potentially less accurate LPMs versus accurate but
opaque statistical forecasts. This created a false dichotomy between understanding and accuracy that
undermined trust in simulation-based policy recommendations.

7.3 Decentralized Agent-based Simulations

This pillar focuses on securely deploying simulations over decentralized networks of physical agents.

Problem 5: The Cold Start Challenge Decentralized agent networks suffer from adoption chal-
lenges due to limited initial utility. During COVID-19, contact tracing apps reached only 21% adop-
tion in the US, creating a cold start problem where the app’s usefulness depended on network effects
that couldn’t materialize without sufficient initial adoption. This fundamental challenge—providing
value before reaching critical mass—limits the practical deployment of decentralized LPMs regardless
of their theoretical capabilities.

Problem 6: Orchestrating Agent Networks Complex socio-technical systems often face incentive
misalignment between individual agent objectives and global welfare. During NYC’s pandemic
response, we observed this misalignment when rational individual behaviors (e.g., mobility decisions
optimizing for personal utility) led to suboptimal collective outcomes (e.g., increased disease trans-
mission). Current approaches either assume unrealistic compliance with centralized directives or
rely on simplified rational agent models that fail to capture the nuanced, heterogeneous behaviors
observed in real populations. LPMs offer the potential to discover robust incentive mechanisms that
align decentralized decision-making with social welfare objectives, without requiring centralized
control or data sharing.

8 Conclusion

Large Population Models (LPMs) represent a significant advancement in our ability to understand and
address challenges that emerge from the interactions of millions of individuals. By overcoming the
limitations of traditional agent-based models, LPMs enable more accurate predictions, more efficient
policy evaluation, and more seamless integration with real-world systems.

The three key innovations presented in this paper—compositional design with tensorized execution,
differentiable specification, and decentralized computation—work together synergistically to trans-
form population-scale modeling. Compositional design allows us to efficiently simulate millions of
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agents with sophisticated behaviors on commodity hardware. Differentiability enables gradient-based
calibration and learning from heterogeneous data streams. Decentralized protocols bridge the gap
between simulated and physical environments while protecting individual privacy. This opens new
possibilities for addressing challenges from pandemic response to climate adaptation— characterized
by complex feedback loops between individual behavior and population-scale dynamics.

The COVID-19 case study illustrates how LPMs can provide actionable insights in crisis scenarios
by capturing the intricate interplay between disease transmission, economic impacts, and behavioral
adaptation. These capabilities extend beyond epidemiology to any domain where individual decisions
aggregate into collective outcomes that, in turn, reshape individual incentives.

As digital technologies increasingly mediate social interactions and generate unprecedented data
about human behavior, LPMs provide a framework for responsibly leveraging this information to
understand and improve social systems. By combining computational efficiency, mathematical rigor,
and privacy-preserving protocols, LPMs offer a path toward modeling complex social dynamics at
true population scale while respecting individual autonomy and privacy.

While current AI advances primarily focus on creating sophisticated individual agents, LPMs highlight
the importance of understanding collective intelligence and emergent phenomena. As we continue to
develop more powerful computational tools, LPMs serve as a reminder that many of our most pressing
challenges require not just modeling individual cognition, but the complex web of interactions through
which individual behaviors become social outcomes.
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