
Large Population Models: Executive Summary

1 Introduction

Many of society’s most pressing challenges—from pandemic response to supply chain disruptions to
climate adaptation—emerge from the collective behavior of millions of individuals making decisions
over time. Understanding how individual choices aggregate into system-level outcomes requires
computational tools that can simulate realistic populations, learn from diverse data sources, and
integrate with real-world systems.

Traditional approaches to modeling population behavior have faced significant limitations. While
large-scale statistical models can capture broad trends, they often miss nuanced interactions that drive
emergent phenomena. Meanwhile, agent-based models that simulate individual decision-making
have typically been limited to small populations or simplified behaviors. The result is a critical gap in
our ability to understand and address complex societal challenges.

Large Population Models (LPMs) bridge this gap by enabling the simulation of entire populations
with realistic behaviors and interactions at unprecedented scale. Unlike current AI advances that
focus primarily on creating sophisticated "digital humans" with individual capabilities, LPMs develop
"digital societies" where the richness of interactions reveals emergent phenomena. This approach
offers a complementary path in AI research—illuminating collective intelligence and providing
testing grounds for policies before real-world deployment.

2 The COVID-19 Pandemic: A Case Study for Large Population Models

Imagine you are the public health leader for New York City during the COVID-19 pandemic. You
face critical questions that will impact millions of lives: When will the next wave emerge? Which
testing strategy would be most effective—PCR or antigen tests? How would a $500 stimulus check
affect people’s behavior and disease spread?

Finding answers to these questions requires understanding the complex interplay between three key
elements:

1. Citizen behavior: How individuals make decisions based on their circumstances, risk
perceptions, and financial constraints

2. Disease dynamics: How the virus spreads through a population via complex networks of
interactions

3. Intervention strategies: How testing, vaccination, and economic policies affect both disease
spread and human behavior

For the NYC pandemic scenario, we constructed a synthetic population of 8.4 million individuals,
with demographic profiles derived from census data. Each person in our digital city had both static
attributes (age, gender, income, occupation) and dynamic properties (disease status, employment
status) that evolved over time. These digital citizens interacted through realistic networks—living
in households, commuting to workplaces, and moving around the city—creating channels for both
disease transmission and economic influence. This virtual society became a testing ground where we
could observe individual choices—whether to wear a mask, get tested after exposure, or reduce social
activities due to financial pressures — aggregate into system-level outcomes like infection waves and
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economic impacts. Most importantly, this approach enabled us to test different intervention strategies,
like targeted testing programs or financial incentives, before implementing them in the real world.

Building these models revealed three key challenges that prevented earlier approaches from being
effective.

• First is the "detail vs. scale" challenge – like trying to film a stadium of people while
capturing each person’s facial expressions simultaneously. Traditional approaches could
either simulate realistic behaviors for a small neighborhood or track simplified movements
for an entire city, but not both.

• Second is the "puzzle piece" problem – information came from many different sources
(hospital data, cell phone movements, survey responses) that didn’t fit together easily.

• Third is the "privacy vs. usefulness" dilemma – the most valuable data for prediction was
often the most sensitive personal information that people were reluctant to share.

Our innovations in Large Population Models tackle these challenges head-on, creating digital worlds
where we can see how millions of individual decisions combine to shape our collective future.

Figure 1: Performance benchmarking comparing computational efficiency of LPMs versus conven-
tional ABMs for simulating 8.4 million agents representing NYC’s population. LPMs demonstrate
orders-of-magnitude improvements in simulation (600x), calibration (3000x), and analysis (5000x)
runtimes, enabling previously infeasible large-scale agent-based modeling applications.

3 The Three Fundamental Challenges and Our Solutions

Building Large Population Models requires overcoming three fundamental challenges that have
limited traditional approaches:

3.1 Challenge 1: The Scale vs. Expressiveness Trade-off

The Challenge: Traditional modeling approaches force an artificial choice between scale and
sophistication. Conventional epidemiological models can simulate millions of individuals but rely
on simplified behavioral rules. Recent AI approaches using large language models demonstrate
sophisticated adaptive behaviors but remain limited to small populations of 25-1000 agents—far from
the scale needed to model metropolitan dynamics.

Our Solution: LPMs resolve this tension through compositional design with tensorized execution.
We’ve created a domain-specific language (FLAME) that decomposes complex environmental dy-
namics into modular components that can be efficiently executed across millions of agents. For
agent behavior, our breakthrough insight is that while agent states are highly heterogeneous, their
decision-making often follows similar patterns based on demographic and socioeconomic characteris-
tics. This allows us to identify representative "agent archetypes" that capture behavioral variations
while dramatically reducing computational cost.

The Impact: Our approach achieves a 600× speedup compared to traditional implementations when
simulating 8.4 million agents representing New York City’s population. This makes previously in-
tractable scenarios computationally feasible, enabling more accurate representation of how individual
behaviors aggregate to population-level outcomes.

This is represented in the following papers:

• Chopra et al. flame: a framework for learning in agent-based models (AAMAS 2024, Oral)
[link here]
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Figure 2: Research Pillars: LPMs alleviate the three challenges of ABMs by making simulations
scalable, differentiable and decentralized. In Public Health, this enables LPMs to capture disease
transmission and viral evolution across millions of agents; analyze outcomes by ingesting multi-modal
disease, behavior and intervention data and securely deploy policies while preserving privacy.

• Chopra et al. on the limits of agency in agent-based models (AAMAS 2025, Oral) [link
here]

• Romero-brufau, Chopra et al. Public health impact of delaying second dose of BNT162b2
or mRNA-1273 covid-19 vaccine (British Medical Journal 2021) [link here]

3.2 Challenge 2: Heterogeneous Data Integration

The Challenge: During COVID-19, decision-makers faced a paradoxical situation: data abundance
coupled with information scarcity. Public health departments received heterogeneous streams of
information—clinical reports, wastewater samples, mobility patterns, social media surveys—yet
struggled to integrate these signals into coherent, actionable insights.

Our Solution: LPMs transform simulations from black-box entities into first-class computational
objects amenable to modern optimization techniques. By ensuring that every component remains
differentiable, we can efficiently compute gradients of simulation outputs with respect to parameters,
enabling gradient-based calibration and zero-shot sensitivity analysis. This mathematical innovation
allows simulations to learn directly from heterogeneous data sources without requiring surrogate
models or prohibitively large numbers of simulation runs.

The Impact: Our differentiable approach provides a 3000× speedup in calibration time (from 100,000
hours to 20 minutes) and a 5000× speedup in analysis time (from 5,000 hours to 10 seconds). This
efficiency enables rapid integration of new data and timely analysis of intervention effects—critical
capabilities during fast-evolving crises.

This is demonstrated in the following publications:

• Chopra et al. differentiable agent-based epidemiology (AAMAS 2023, Oral) [link here].

• Quera-bofarull, Chopra et al. Don’t simulate twice: one-shot sensitivity analysis via
automatic differentiation (AAMAS 2023, Oral) and (ICML-W 2022 Best Paper Award)
[link here]

• Garg and Chopra. Distributed Calibration of Agent-based Models (KDD Workshop 2024)
[link here]
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• Chopra, Quera-bofarull and Zhang. differentiable agent-based modeling: systems, methods
and applications (AAMAS 2024, Tutorial) [link here]

3.3 Challenge 3: The Simulation-Reality Gap

The Challenge: Current agent-based simulations rely primarily on aggregate census and mobility data
that has been anonymized or made differentially private, significantly limiting model expressiveness.
During COVID-19, attempts to capture real-time individual data via contact tracing apps faced two
key limitations: privacy concerns that reduced adoption and data quality, and timeliness challenges
where insights became outdated before implementation.

Our Solution: Instead of bringing data to simulations, LPMs bring simulations to data—enabling
secure, decentralized computation directly where data resides while maintaining individual privacy.
We extend differentiable simulation capabilities to distributed agents while preserving privacy through
secure multi-party computation protocols. This creates a dual notion of an agent—an entity that can
exist in both synthetic and physical environments.

The Impact: This approach transforms population modeling from a retrospective analysis tool into
an integrated component of adaptive response systems. Most significantly, it can transform passive
exposure notification apps into proactive exposure management tools. During COVID-19, contact
tracing apps could only inform users about past exposures ("You were exposed 3 days ago"). With
LPMs embedded in mobile devices, these apps can answer forward-looking questions like "How
can I minimize my risk over the next week?" or "What activities should I modify based on current
community transmission?" The simulation runs locally on the device, using privacy-preserved data
about the individual’s behavior patterns and community context to provide personalized guidance.

This is represented in the following publications:

• Chopra et al. Private Agent-based Modeling. (AAMAS 2024, Oral) [link here]

Beyond individual applications, with LPMs, public health systems can estimate personalized risk
based on current contact patterns, calibrate disease models using privacy-preserved individual-level
data, and evaluate policy interventions without compromising individual behavioral data. All of this
happens while maintaining strict privacy guarantees that encourage wider adoption.

4 Real-World Impact and Future Applications

Large Population Models represent a significant advancement in our ability to understand and address
challenges that emerge from the interactions of millions of individuals. Our approach has already
begun to impact global health policy, helping to optimize vaccine distribution strategies for millions
of people and improve pandemic preparedness.

Beyond public health, LPMs can be applied to numerous domains where individual decisions
aggregate into collective outcomes:

• Climate adaptation: Modeling how behavioral changes, technology adoption, and policy
incentives interact to influence emissions and resilience

• Supply chain management: Tracking billions of dollars in global supply flows to improve
efficiency and reduce waste

• Urban planning: Simulating how transportation networks, housing development, and eco-
nomic incentives shape city growth and resource use

As digital technologies increasingly mediate social interactions and generate unprecedented data
about human behavior, LPMs provide a framework for responsibly leveraging this information
to understand and improve social systems. LPMs offer a path toward modeling complex social
dynamics at true population scale while respecting individual autonomy and privacy, with extreme
computational efficiencies.

While current AI advances primarily focus on creating sophisticated individual agents, LPMs highlight
the importance of understanding collective intelligence and emergent phenomena. As we continue to
develop more powerful computational tools, LPMs serve as a reminder that many of our most pressing
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challenges require not just modeling individual cognition, but the complex web of interactions through
which individual behaviors become social outcomes.
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